Cargando…

Adamantane-Based Micro- and Ultra-Microporous Frameworks for Efficient Small Gas and Toxic Organic Vapor Adsorption

Microporous organic polymers and related porous materials have been applied in a wide range of practical applications such as adsorption, catalysis, adsorption, and sensing fields. However, some limitations, like wide pore size distribution, may limit their further applications, especially for adsor...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Wenzhao, Yue, Hangbo, Shuttleworth, Peter S., Xie, Pengbo, Li, Shanji, Guo, Jianwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473574/
https://www.ncbi.nlm.nih.gov/pubmed/30960470
http://dx.doi.org/10.3390/polym11030486
Descripción
Sumario:Microporous organic polymers and related porous materials have been applied in a wide range of practical applications such as adsorption, catalysis, adsorption, and sensing fields. However, some limitations, like wide pore size distribution, may limit their further applications, especially for adsorption. Here, micro- and ultra-microporous frameworks (HBPBA-D and TBBPA-D) were designed and synthesized via Sonogashira–Hagihara coupling of six/eight-arm bromophenyl adamantane-based “knots” and alkynes-type “rod” monomers. The BET surface area and pore size distribution of these frameworks were in the region of 395–488 m(2) g(−1), 0.9–1.1 and 0.42 nm, respectively. The as-made prepared frameworks also showed good chemical ability and high thermal stability up to 350 °C, and at 800 °C only 30% mass loss was observed. Their adsorption capacities for small gas molecules such as CO(2) and CH(4) was 8.9–9.0 wt % and 1.43–1.63 wt % at 273 K/1 bar, and for the toxic organic vapors n-hexane and benzene, 104–172 mg g(−1) and 144–272 mg g(−1) at 298 K/0.8 bar, respectively. These are comparable to many porous polymers with higher BET specific surface areas or after functionalization. These properties make the resulting frameworks efficient absorbent alternatives for small gas or toxic vapor capture, especially in harsh environments.