Cargando…
Influence of Graphene Oxide on the Mechanical Properties, Fracture Toughness, and Microhardness of Recycled Concrete
There is a constant drive to improve the properties of recycled concrete owing to its inferior strength and fracture toughness compared to normal concrete and recent progress in graphene oxide (GO) nanomaterials impelling nanosized reinforcements to recycled concrete. Here, GO-modified natural sand...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473625/ https://www.ncbi.nlm.nih.gov/pubmed/30823655 http://dx.doi.org/10.3390/nano9030325 |
_version_ | 1783412472303058944 |
---|---|
author | Luo, Jianlin Chen, Shuaichao Li, Qiuyi Liu, Chao Gao, Song Zhang, Jigang Guo, Junbing |
author_facet | Luo, Jianlin Chen, Shuaichao Li, Qiuyi Liu, Chao Gao, Song Zhang, Jigang Guo, Junbing |
author_sort | Luo, Jianlin |
collection | PubMed |
description | There is a constant drive to improve the properties of recycled concrete owing to its inferior strength and fracture toughness compared to normal concrete and recent progress in graphene oxide (GO) nanomaterials impelling nanosized reinforcements to recycled concrete. Here, GO-modified natural sand (NS)- or recycled sand (RS)-based mortars (GONMs or GORMs) with six GO fractions (w(GO)s) were fabricated to explore their 28 d mechanical strengths (f(28)(t), f(28)(c)), fracture toughness (K(IC), δ(c)), and microhardness (H(v)), as well as their crystal phases (using X-ray powder diffraction) and microstructures (using scanning electronic microscopy). Results reveal, greater enhancements in mechanical strengths (4.50% and 10.61% in f(28)(t), 4.76% and 13.87% in f(28)(c)), fracture toughness (16.49% and 38.17% in K(IC), 160.14% and 286.59% in δ(c)), and microhardness (21.02% and 52.70% in H(v)) of GORM with just 0.025 wt‰ and 0.05 wt‰ GO, respectively, with respect to the control are achieved when comparing with those of GONM with the same w(GO). More zigzag surfaces, more irregular weak interface slips, and the relatively lower strengths of RS bring the superiority of the template and reshaping effects of GO into full play in GORM rather than in GONM. These outcomes benefit a wide range of applications of recycled concrete products. |
format | Online Article Text |
id | pubmed-6473625 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64736252019-05-03 Influence of Graphene Oxide on the Mechanical Properties, Fracture Toughness, and Microhardness of Recycled Concrete Luo, Jianlin Chen, Shuaichao Li, Qiuyi Liu, Chao Gao, Song Zhang, Jigang Guo, Junbing Nanomaterials (Basel) Article There is a constant drive to improve the properties of recycled concrete owing to its inferior strength and fracture toughness compared to normal concrete and recent progress in graphene oxide (GO) nanomaterials impelling nanosized reinforcements to recycled concrete. Here, GO-modified natural sand (NS)- or recycled sand (RS)-based mortars (GONMs or GORMs) with six GO fractions (w(GO)s) were fabricated to explore their 28 d mechanical strengths (f(28)(t), f(28)(c)), fracture toughness (K(IC), δ(c)), and microhardness (H(v)), as well as their crystal phases (using X-ray powder diffraction) and microstructures (using scanning electronic microscopy). Results reveal, greater enhancements in mechanical strengths (4.50% and 10.61% in f(28)(t), 4.76% and 13.87% in f(28)(c)), fracture toughness (16.49% and 38.17% in K(IC), 160.14% and 286.59% in δ(c)), and microhardness (21.02% and 52.70% in H(v)) of GORM with just 0.025 wt‰ and 0.05 wt‰ GO, respectively, with respect to the control are achieved when comparing with those of GONM with the same w(GO). More zigzag surfaces, more irregular weak interface slips, and the relatively lower strengths of RS bring the superiority of the template and reshaping effects of GO into full play in GORM rather than in GONM. These outcomes benefit a wide range of applications of recycled concrete products. MDPI 2019-03-01 /pmc/articles/PMC6473625/ /pubmed/30823655 http://dx.doi.org/10.3390/nano9030325 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Luo, Jianlin Chen, Shuaichao Li, Qiuyi Liu, Chao Gao, Song Zhang, Jigang Guo, Junbing Influence of Graphene Oxide on the Mechanical Properties, Fracture Toughness, and Microhardness of Recycled Concrete |
title | Influence of Graphene Oxide on the Mechanical Properties, Fracture Toughness, and Microhardness of Recycled Concrete |
title_full | Influence of Graphene Oxide on the Mechanical Properties, Fracture Toughness, and Microhardness of Recycled Concrete |
title_fullStr | Influence of Graphene Oxide on the Mechanical Properties, Fracture Toughness, and Microhardness of Recycled Concrete |
title_full_unstemmed | Influence of Graphene Oxide on the Mechanical Properties, Fracture Toughness, and Microhardness of Recycled Concrete |
title_short | Influence of Graphene Oxide on the Mechanical Properties, Fracture Toughness, and Microhardness of Recycled Concrete |
title_sort | influence of graphene oxide on the mechanical properties, fracture toughness, and microhardness of recycled concrete |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473625/ https://www.ncbi.nlm.nih.gov/pubmed/30823655 http://dx.doi.org/10.3390/nano9030325 |
work_keys_str_mv | AT luojianlin influenceofgrapheneoxideonthemechanicalpropertiesfracturetoughnessandmicrohardnessofrecycledconcrete AT chenshuaichao influenceofgrapheneoxideonthemechanicalpropertiesfracturetoughnessandmicrohardnessofrecycledconcrete AT liqiuyi influenceofgrapheneoxideonthemechanicalpropertiesfracturetoughnessandmicrohardnessofrecycledconcrete AT liuchao influenceofgrapheneoxideonthemechanicalpropertiesfracturetoughnessandmicrohardnessofrecycledconcrete AT gaosong influenceofgrapheneoxideonthemechanicalpropertiesfracturetoughnessandmicrohardnessofrecycledconcrete AT zhangjigang influenceofgrapheneoxideonthemechanicalpropertiesfracturetoughnessandmicrohardnessofrecycledconcrete AT guojunbing influenceofgrapheneoxideonthemechanicalpropertiesfracturetoughnessandmicrohardnessofrecycledconcrete |