Cargando…

Characterization of Highly Filled PP/Graphite Composites for Adhesive Joining in Fuel Cell Applications

In order to evaluate the suitability of graphite composite materials for use as bipolar plates in fuel cells, polypropylene (PP) was melt compounded with expanded graphite as conductive filler to form composites with different filler contents of 10–80 wt %. Electrical resistivity, thermal conductivi...

Descripción completa

Detalles Bibliográficos
Autores principales: Rzeczkowski, Piotr, Krause, Beate, Pötschke, Petra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473754/
https://www.ncbi.nlm.nih.gov/pubmed/30960446
http://dx.doi.org/10.3390/polym11030462
_version_ 1783412501874999296
author Rzeczkowski, Piotr
Krause, Beate
Pötschke, Petra
author_facet Rzeczkowski, Piotr
Krause, Beate
Pötschke, Petra
author_sort Rzeczkowski, Piotr
collection PubMed
description In order to evaluate the suitability of graphite composite materials for use as bipolar plates in fuel cells, polypropylene (PP) was melt compounded with expanded graphite as conductive filler to form composites with different filler contents of 10–80 wt %. Electrical resistivity, thermal conductivity, and mechanical properties were measured and evaluated as a function of filler content. The electrical and thermal conductivities increased with filler content. Tensile and flexural strengths decreased with the incorporation of expanded graphite in PP. With higher graphite contents, however, both strength values remained more or less unchanged and were below the values of pure PP. Young’s-modulus and flexural modulus increased almost linearly with increasing filler content. The results of the thermogravimetric analysis confirmed the actual filler content in the composite materials. In order to evaluate the wettability and suitability for adhesive joining of graphite composites, contact angle measurements were conducted and surface tensions of composite surfaces were calculated. The results showed a significant increase in the surface tension of graphite composites with increasing filler content. Furthermore, graphite composites were adhesively joined and the strength of the joints was evaluated in the lap-shear test. Increasing filler content in the substrate material resulted in higher tensile lap-shear strength. Additionally, the influence of surface treatment (plasma and chemical) on surface tension and tensile lap-shear strength was investigated. The surface treatment led to a significant improvement of both properties.
format Online
Article
Text
id pubmed-6473754
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-64737542019-05-03 Characterization of Highly Filled PP/Graphite Composites for Adhesive Joining in Fuel Cell Applications Rzeczkowski, Piotr Krause, Beate Pötschke, Petra Polymers (Basel) Article In order to evaluate the suitability of graphite composite materials for use as bipolar plates in fuel cells, polypropylene (PP) was melt compounded with expanded graphite as conductive filler to form composites with different filler contents of 10–80 wt %. Electrical resistivity, thermal conductivity, and mechanical properties were measured and evaluated as a function of filler content. The electrical and thermal conductivities increased with filler content. Tensile and flexural strengths decreased with the incorporation of expanded graphite in PP. With higher graphite contents, however, both strength values remained more or less unchanged and were below the values of pure PP. Young’s-modulus and flexural modulus increased almost linearly with increasing filler content. The results of the thermogravimetric analysis confirmed the actual filler content in the composite materials. In order to evaluate the wettability and suitability for adhesive joining of graphite composites, contact angle measurements were conducted and surface tensions of composite surfaces were calculated. The results showed a significant increase in the surface tension of graphite composites with increasing filler content. Furthermore, graphite composites were adhesively joined and the strength of the joints was evaluated in the lap-shear test. Increasing filler content in the substrate material resulted in higher tensile lap-shear strength. Additionally, the influence of surface treatment (plasma and chemical) on surface tension and tensile lap-shear strength was investigated. The surface treatment led to a significant improvement of both properties. MDPI 2019-03-11 /pmc/articles/PMC6473754/ /pubmed/30960446 http://dx.doi.org/10.3390/polym11030462 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Rzeczkowski, Piotr
Krause, Beate
Pötschke, Petra
Characterization of Highly Filled PP/Graphite Composites for Adhesive Joining in Fuel Cell Applications
title Characterization of Highly Filled PP/Graphite Composites for Adhesive Joining in Fuel Cell Applications
title_full Characterization of Highly Filled PP/Graphite Composites for Adhesive Joining in Fuel Cell Applications
title_fullStr Characterization of Highly Filled PP/Graphite Composites for Adhesive Joining in Fuel Cell Applications
title_full_unstemmed Characterization of Highly Filled PP/Graphite Composites for Adhesive Joining in Fuel Cell Applications
title_short Characterization of Highly Filled PP/Graphite Composites for Adhesive Joining in Fuel Cell Applications
title_sort characterization of highly filled pp/graphite composites for adhesive joining in fuel cell applications
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473754/
https://www.ncbi.nlm.nih.gov/pubmed/30960446
http://dx.doi.org/10.3390/polym11030462
work_keys_str_mv AT rzeczkowskipiotr characterizationofhighlyfilledppgraphitecompositesforadhesivejoininginfuelcellapplications
AT krausebeate characterizationofhighlyfilledppgraphitecompositesforadhesivejoininginfuelcellapplications
AT potschkepetra characterizationofhighlyfilledppgraphitecompositesforadhesivejoininginfuelcellapplications