Cargando…
Self-Healing Hydrogels with both LCST and UCST through Cross-Linking Induced Thermo-Response
Self-healing hydrogels have drawngreat attention in the past decade since the self-healing property is one of the characteristics of living creatures. In this study, poly(acrylamide-stat-diacetone acrylamide) P(AM-stat-DAA) with a pendant ketone group was synthesized from easy accessible monomers, a...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473816/ https://www.ncbi.nlm.nih.gov/pubmed/30960473 http://dx.doi.org/10.3390/polym11030490 |
Sumario: | Self-healing hydrogels have drawngreat attention in the past decade since the self-healing property is one of the characteristics of living creatures. In this study, poly(acrylamide-stat-diacetone acrylamide) P(AM-stat-DAA) with a pendant ketone group was synthesized from easy accessible monomers, and thermo-responsive self-healing hydrogels were prepared through a series of diacylhydrazide compounds cross-linking without any additional stimulus. Although the copolymers do not show thermo-response, the hydrogels became thermo-responsive andboth the lower critical solution temperature (LCST) and upper critical solution temperature (UCST) varied with the composition of the copolymer and structure of cross-linkers. With a dynamic covalent bond connection, the hydrogel showed gel-sol-gel transition triggered by acidity, redox, and ketone to acylhydrazide group ratios. This is another interesting cross-linking induced thermo-responsive (CIT) hydrogel with different properties compared to PNIPAM-based thermo-responsive hydrogels. The self-healing hydrogel with CIT properties could have great potential for application in areas related to bioscience, life simulation, and temperature switching. |
---|