Cargando…

Metal/Semiconductor Nanocomposites for Photocatalysis: Fundamentals, Structures, Applications and Properties

Due to the capability of utilizing light energy to drive chemical reactions, photocatalysis has been widely accepted as a green technology to help us address the increasingly severe environment and energy issues facing human society. To date, a large amount of research has been devoted to enhancing...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Yong-sheng, Li, Jun, Li, Jianguo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473989/
https://www.ncbi.nlm.nih.gov/pubmed/30836647
http://dx.doi.org/10.3390/nano9030359
Descripción
Sumario:Due to the capability of utilizing light energy to drive chemical reactions, photocatalysis has been widely accepted as a green technology to help us address the increasingly severe environment and energy issues facing human society. To date, a large amount of research has been devoted to enhancing the properties of photocatalysts. As reported, coupling semiconductors with metals is one of the most effective methods to achieve high-performance photocatalysts. The excellent properties of metal/semiconductor (M/S) nanocomposite photocatalysts originate in two aspects: (a) improved charge separation at the metal-semiconductor interface; and (b) increased absorption of visible light due to the surface plasmon resonance of metals. So far, many M/S nanocomposite photocatalysts with different structures have been developed for the application in environmental remediation, selective organic transformation, hydrogen evolution, and disinfection. Herein, we will give a review on the M/S nanocomposite photocatalysts, regarding their fundamentals, structures (as well as their typical synthetic approaches), applications and properties. Finally, we will also present our perspective on the future development of M/S nanocomposite photocatalysts.