Cargando…
Metal/Semiconductor Nanocomposites for Photocatalysis: Fundamentals, Structures, Applications and Properties
Due to the capability of utilizing light energy to drive chemical reactions, photocatalysis has been widely accepted as a green technology to help us address the increasingly severe environment and energy issues facing human society. To date, a large amount of research has been devoted to enhancing...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6473989/ https://www.ncbi.nlm.nih.gov/pubmed/30836647 http://dx.doi.org/10.3390/nano9030359 |
Sumario: | Due to the capability of utilizing light energy to drive chemical reactions, photocatalysis has been widely accepted as a green technology to help us address the increasingly severe environment and energy issues facing human society. To date, a large amount of research has been devoted to enhancing the properties of photocatalysts. As reported, coupling semiconductors with metals is one of the most effective methods to achieve high-performance photocatalysts. The excellent properties of metal/semiconductor (M/S) nanocomposite photocatalysts originate in two aspects: (a) improved charge separation at the metal-semiconductor interface; and (b) increased absorption of visible light due to the surface plasmon resonance of metals. So far, many M/S nanocomposite photocatalysts with different structures have been developed for the application in environmental remediation, selective organic transformation, hydrogen evolution, and disinfection. Herein, we will give a review on the M/S nanocomposite photocatalysts, regarding their fundamentals, structures (as well as their typical synthetic approaches), applications and properties. Finally, we will also present our perspective on the future development of M/S nanocomposite photocatalysts. |
---|