Cargando…
Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface
In this paper, we look at the work of a classical plasmon-induced transparency (PIT) based on metasurface, including a periodic lattice with a cut wire (CW) and a pair of symmetry split ring resonators (SSR). Destructive interference of the ‘bright-dark’ mode originated from the CW and a pair of SSR...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474136/ https://www.ncbi.nlm.nih.gov/pubmed/30845741 http://dx.doi.org/10.3390/nano9030385 |
_version_ | 1783412585587015680 |
---|---|
author | Wang, Xianjun Meng, Hongyun Deng, Shuying Lao, Chaode Wei, Zhongchao Wang, Faqiang Tan, Chunhua Huang, Xuguang |
author_facet | Wang, Xianjun Meng, Hongyun Deng, Shuying Lao, Chaode Wei, Zhongchao Wang, Faqiang Tan, Chunhua Huang, Xuguang |
author_sort | Wang, Xianjun |
collection | PubMed |
description | In this paper, we look at the work of a classical plasmon-induced transparency (PIT) based on metasurface, including a periodic lattice with a cut wire (CW) and a pair of symmetry split ring resonators (SSR). Destructive interference of the ‘bright-dark’ mode originated from the CW and a pair of SSRs and resulted in a pronounced transparency peak at 1.148 THz, with 85% spectral contrast ratio. In the simulation, the effects of the relative distance between the CW and the SSR pair resonator, as well as the vertical distance of the split gap, on the coupling strength of the PIT effect, have been investigated. Furthermore, we introduce a continuous graphene strip monolayer into the metamaterial and by manipulating the Fermi level of the graphene we see a complete modulation of the amplitude and line shape of the PIT transparency peak. The near-field couplings in the relative mode resonators are quantitatively understood by coupled harmonic oscillator model, which indicates that the modulation of the PIT effect result from the variation of the damping rate in the dark mode. The transmitted electric field distributions with polarization vector clearly confirmed this conclusion. Finally, a group delay [Formula: see text] of 5.4 ps within the transparency window is achieved. We believe that this design has practical applications in terahertz (THz) functional devices and slow light devices. |
format | Online Article Text |
id | pubmed-6474136 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64741362019-05-01 Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface Wang, Xianjun Meng, Hongyun Deng, Shuying Lao, Chaode Wei, Zhongchao Wang, Faqiang Tan, Chunhua Huang, Xuguang Nanomaterials (Basel) Article In this paper, we look at the work of a classical plasmon-induced transparency (PIT) based on metasurface, including a periodic lattice with a cut wire (CW) and a pair of symmetry split ring resonators (SSR). Destructive interference of the ‘bright-dark’ mode originated from the CW and a pair of SSRs and resulted in a pronounced transparency peak at 1.148 THz, with 85% spectral contrast ratio. In the simulation, the effects of the relative distance between the CW and the SSR pair resonator, as well as the vertical distance of the split gap, on the coupling strength of the PIT effect, have been investigated. Furthermore, we introduce a continuous graphene strip monolayer into the metamaterial and by manipulating the Fermi level of the graphene we see a complete modulation of the amplitude and line shape of the PIT transparency peak. The near-field couplings in the relative mode resonators are quantitatively understood by coupled harmonic oscillator model, which indicates that the modulation of the PIT effect result from the variation of the damping rate in the dark mode. The transmitted electric field distributions with polarization vector clearly confirmed this conclusion. Finally, a group delay [Formula: see text] of 5.4 ps within the transparency window is achieved. We believe that this design has practical applications in terahertz (THz) functional devices and slow light devices. MDPI 2019-03-06 /pmc/articles/PMC6474136/ /pubmed/30845741 http://dx.doi.org/10.3390/nano9030385 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Xianjun Meng, Hongyun Deng, Shuying Lao, Chaode Wei, Zhongchao Wang, Faqiang Tan, Chunhua Huang, Xuguang Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface |
title | Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface |
title_full | Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface |
title_fullStr | Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface |
title_full_unstemmed | Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface |
title_short | Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface |
title_sort | hybrid metal graphene-based tunable plasmon-induced transparency in terahertz metasurface |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474136/ https://www.ncbi.nlm.nih.gov/pubmed/30845741 http://dx.doi.org/10.3390/nano9030385 |
work_keys_str_mv | AT wangxianjun hybridmetalgraphenebasedtunableplasmoninducedtransparencyinterahertzmetasurface AT menghongyun hybridmetalgraphenebasedtunableplasmoninducedtransparencyinterahertzmetasurface AT dengshuying hybridmetalgraphenebasedtunableplasmoninducedtransparencyinterahertzmetasurface AT laochaode hybridmetalgraphenebasedtunableplasmoninducedtransparencyinterahertzmetasurface AT weizhongchao hybridmetalgraphenebasedtunableplasmoninducedtransparencyinterahertzmetasurface AT wangfaqiang hybridmetalgraphenebasedtunableplasmoninducedtransparencyinterahertzmetasurface AT tanchunhua hybridmetalgraphenebasedtunableplasmoninducedtransparencyinterahertzmetasurface AT huangxuguang hybridmetalgraphenebasedtunableplasmoninducedtransparencyinterahertzmetasurface |