Cargando…
End-to-End Deep Image Reconstruction From Human Brain Activity
Deep neural networks (DNNs) have recently been applied successfully to brain decoding and image reconstruction from functional magnetic resonance imaging (fMRI) activity. However, direct training of a DNN with fMRI data is often avoided because the size of available data is thought to be insufficien...
Autores principales: | Shen, Guohua, Dwivedi, Kshitij, Majima, Kei, Horikawa, Tomoyasu, Kamitani, Yukiyasu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474395/ https://www.ncbi.nlm.nih.gov/pubmed/31031613 http://dx.doi.org/10.3389/fncom.2019.00021 |
Ejemplares similares
-
Deep image reconstruction from human brain activity
por: Shen, Guohua, et al.
Publicado: (2019) -
Reconstructing visual illusory experiences from human brain activity
por: Cheng, Fan L., et al.
Publicado: (2023) -
Hierarchical Neural Representation of Dreamed Objects Revealed by Brain Decoding with Deep Neural Network Features
por: Horikawa, Tomoyasu, et al.
Publicado: (2017) -
Position Information Encoded by Population Activity in Hierarchical Visual Areas
por: Majima, Kei, et al.
Publicado: (2017) -
Characterization of deep neural network features by decodability from human brain activity
por: Horikawa, Tomoyasu, et al.
Publicado: (2019)