Cargando…
Phase transitions of the typical algorithmic complexity of the random satisfiability problem studied with linear programming
Here we study linear programming applied to the random K-SAT problem, a fundamental problem in computational complexity. The K-SAT problem is to decide whether a Boolean formula with N variables and structured as a conjunction of M clauses, each being a disjunction of K variables or their negations...
Autores principales: | Schawe, Hendrik, Bleim, Roman, Hartmann, Alexander K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474652/ https://www.ncbi.nlm.nih.gov/pubmed/31002678 http://dx.doi.org/10.1371/journal.pone.0215309 |
Ejemplares similares
-
The satisfiability problem /
Publicado: (1999) -
Quantum Algorithm for Variant Maximum Satisfiability †
por: Alasow, Abdirahman, et al.
Publicado: (2022) -
Phase Transitions in Combinatorial Optimization Problems: Basics, Algorithms and Statistical Mechanics
por: Hartmann, Alexander K, et al.
Publicado: (2005) -
Efficient solution of Boolean satisfiability problems with digital memcomputing
por: Bearden, Sean R. B., et al.
Publicado: (2020) -
Algorithm for finding partitionings of hard variants of boolean satisfiability problem with application to inversion of some cryptographic functions
por: Semenov, Alexander, et al.
Publicado: (2016)