Cargando…
Network constraints on learnability of probabilistic motor sequences
Human learners are adept at grasping the complex relationships underlying incoming sequential input(1). In the present work, we formalize complex relationships as graph structures(2) derived from temporal associations(3,4) in motor sequences. Next, we explore the extent to which learners are sensiti...
Autores principales: | Kahn, Ari E., Karuza, Elisabeth A., Vettel, Jean M., Bassett, Danielle S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474692/ https://www.ncbi.nlm.nih.gov/pubmed/30988437 http://dx.doi.org/10.1038/s41562-018-0463-8 |
Ejemplares similares
-
Network architectures supporting learnability
por: Zurn, Perry, et al.
Publicado: (2020) -
Optimizing the human learnability of abstract network representations
por: Qian, William, et al.
Publicado: (2022) -
Process reveals structure: How a network is traversed mediates expectations about its architecture
por: Karuza, Elisabeth A., et al.
Publicado: (2017) -
Deep Learnability: Using Neural Networks to Quantify Language Similarity and Learnability
por: Cohen, Clara, et al.
Publicado: (2020) -
Subgraphs of functional brain networks identify dynamical constraints of cognitive control
por: Khambhati, Ankit N., et al.
Publicado: (2018)