Cargando…
Deep learning for photoacoustic tomography from sparse data
The development of fast and accurate image reconstruction algorithms is a central aspect of computed tomography. In this paper, we investigate this issue for the sparse data problem in photoacoustic tomography (PAT). We develop a direct and highly efficient reconstruction algorithm based on deep lea...
Autores principales: | Antholzer, Stephan, Haltmeier, Markus, Schwab, Johannes |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474723/ https://www.ncbi.nlm.nih.gov/pubmed/31057659 http://dx.doi.org/10.1080/17415977.2018.1518444 |
Ejemplares similares
-
Big in Japan: Regularizing Networks for Solving Inverse Problems
por: Schwab, Johannes, et al.
Publicado: (2019) -
Discretization of Learned NETT Regularization for Solving Inverse Problems
por: Antholzer, Stephan, et al.
Publicado: (2021) -
Limited-View and Sparse Photoacoustic Tomography for Neuroimaging with Deep Learning
por: Guan, Steven, et al.
Publicado: (2020) -
Stochastic Proximal Gradient Algorithms for Multi-Source Quantitative Photoacoustic Tomography
por: Rabanser, Simon, et al.
Publicado: (2018) -
Domain Transform Network for Photoacoustic Tomography from Limited-view and Sparsely Sampled Data
por: Tong, Tong, et al.
Publicado: (2020)