Cargando…
Frames for the Solution of Operator Equations in Hilbert Spaces with Fixed Dual Pairing
For the solution of operator equations, Stevenson introduced a definition of frames, where a Hilbert space and its dual are not identified. This means that the Riesz isomorphism is not used as an identification, which, for example, does not make sense for the Sobolev spaces [Image: see text] and [Im...
Autores principales: | Balazs, Peter, Harbrecht, Helmut |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474734/ https://www.ncbi.nlm.nih.gov/pubmed/31057336 http://dx.doi.org/10.1080/01630563.2018.1495232 |
Ejemplares similares
-
Characterization and stability of approximately dual g-frames in Hilbert spaces
por: Fu, Yan-Ling, et al.
Publicado: (2018) -
Iterative methods for the solution of a linear operator equation in Hilbert space: a survey
por: Patterson, Walter Mead
Publicado: (1974) -
Explicit and approximate solutions of the Euler-Poisson-Darboux equation with an operator coefficient in Hilbert space
por: Gavrilyuk, I P, et al.
Publicado: (1995) -
Operators on Hilbert space
por: Sunder, V S
Publicado: (2016) -
Conference on Hilbert Space Operators
por: Bachar, John M, et al.
Publicado: (1978)