Cargando…

Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials

The design of materials that can mimic the complex yet fast actuation phenomena in nature is important but challenging. Herein, we present a new paradigm for designing responsive hydrogel sheets that can exhibit ultrafast inverse snapping deformation. Dual-gradient structures of hydrogel sheets enab...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Wenxin, Shan, Caiyun, Guo, Hongyu, Sang, Jianwei, Wang, Rui, Zheng, Ranran, Sui, Kunyan, Nie, Zhihong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474766/
https://www.ncbi.nlm.nih.gov/pubmed/31016242
http://dx.doi.org/10.1126/sciadv.aav7174
_version_ 1783412662377381888
author Fan, Wenxin
Shan, Caiyun
Guo, Hongyu
Sang, Jianwei
Wang, Rui
Zheng, Ranran
Sui, Kunyan
Nie, Zhihong
author_facet Fan, Wenxin
Shan, Caiyun
Guo, Hongyu
Sang, Jianwei
Wang, Rui
Zheng, Ranran
Sui, Kunyan
Nie, Zhihong
author_sort Fan, Wenxin
collection PubMed
description The design of materials that can mimic the complex yet fast actuation phenomena in nature is important but challenging. Herein, we present a new paradigm for designing responsive hydrogel sheets that can exhibit ultrafast inverse snapping deformation. Dual-gradient structures of hydrogel sheets enable the accumulation of elastic energy in hydrogels by converting prestored energy and rapid reverse snapping (<1 s) to release the energy. By controlling the magnitude and location of energy prestored within the hydrogels, the snapping of hydrogel sheets can be programmed to achieve different structures and actuation behaviors. We have developed theoretical model to elucidate the crucial role of dual gradients and predict the snapping motion of various hydrogel materials. This new design principle provides guidance for fabricating actuation materials with applications in tissue engineering, soft robotics, and active medical implants.
format Online
Article
Text
id pubmed-6474766
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-64747662019-04-23 Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials Fan, Wenxin Shan, Caiyun Guo, Hongyu Sang, Jianwei Wang, Rui Zheng, Ranran Sui, Kunyan Nie, Zhihong Sci Adv Research Articles The design of materials that can mimic the complex yet fast actuation phenomena in nature is important but challenging. Herein, we present a new paradigm for designing responsive hydrogel sheets that can exhibit ultrafast inverse snapping deformation. Dual-gradient structures of hydrogel sheets enable the accumulation of elastic energy in hydrogels by converting prestored energy and rapid reverse snapping (<1 s) to release the energy. By controlling the magnitude and location of energy prestored within the hydrogels, the snapping of hydrogel sheets can be programmed to achieve different structures and actuation behaviors. We have developed theoretical model to elucidate the crucial role of dual gradients and predict the snapping motion of various hydrogel materials. This new design principle provides guidance for fabricating actuation materials with applications in tissue engineering, soft robotics, and active medical implants. American Association for the Advancement of Science 2019-04-19 /pmc/articles/PMC6474766/ /pubmed/31016242 http://dx.doi.org/10.1126/sciadv.aav7174 Text en Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Fan, Wenxin
Shan, Caiyun
Guo, Hongyu
Sang, Jianwei
Wang, Rui
Zheng, Ranran
Sui, Kunyan
Nie, Zhihong
Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials
title Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials
title_full Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials
title_fullStr Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials
title_full_unstemmed Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials
title_short Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials
title_sort dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474766/
https://www.ncbi.nlm.nih.gov/pubmed/31016242
http://dx.doi.org/10.1126/sciadv.aav7174
work_keys_str_mv AT fanwenxin dualgradientenabledultrafastbiomimeticsnappingofhydrogelmaterials
AT shancaiyun dualgradientenabledultrafastbiomimeticsnappingofhydrogelmaterials
AT guohongyu dualgradientenabledultrafastbiomimeticsnappingofhydrogelmaterials
AT sangjianwei dualgradientenabledultrafastbiomimeticsnappingofhydrogelmaterials
AT wangrui dualgradientenabledultrafastbiomimeticsnappingofhydrogelmaterials
AT zhengranran dualgradientenabledultrafastbiomimeticsnappingofhydrogelmaterials
AT suikunyan dualgradientenabledultrafastbiomimeticsnappingofhydrogelmaterials
AT niezhihong dualgradientenabledultrafastbiomimeticsnappingofhydrogelmaterials