Cargando…
Electrical percolation threshold of carbon black in a polymer matrix and its application to antistatic fibre
In this study, using three types of resins (each with unique material properties) as a matrix, and carbon black (CB) as a conductive additive, conductive fibres were fabricated through a melt-spinning process. An examination of the electrical conductivity revealed that a CB/polyethylene terephthalat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474880/ https://www.ncbi.nlm.nih.gov/pubmed/31004091 http://dx.doi.org/10.1038/s41598-019-42495-1 |
Sumario: | In this study, using three types of resins (each with unique material properties) as a matrix, and carbon black (CB) as a conductive additive, conductive fibres were fabricated through a melt-spinning process. An examination of the electrical conductivity revealed that a CB/polyethylene terephthalate (PET) composite had a low percolation value of 0.58 wt%, and thus the highest conductivity of the three resin types. These results indicate that CB/PET fibres could be used to manufacture antistatic fabrics. |
---|