Cargando…

Cyclic permutations for qudits in d dimensions

One of the main challenges in quantum technologies is the ability to control individual quantum systems. This task becomes increasingly difficult as the dimension of the system grows. Here we propose a general setup for cyclic permutations X(d) in d dimensions, a major primitive for constructing arb...

Descripción completa

Detalles Bibliográficos
Autores principales: Isdrailă, Tudor-Alexandru, Kusko, Cristian, Ionicioiu, Radu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474885/
https://www.ncbi.nlm.nih.gov/pubmed/31004090
http://dx.doi.org/10.1038/s41598-019-42708-7
Descripción
Sumario:One of the main challenges in quantum technologies is the ability to control individual quantum systems. This task becomes increasingly difficult as the dimension of the system grows. Here we propose a general setup for cyclic permutations X(d) in d dimensions, a major primitive for constructing arbitrary qudit gates. Using orbital angular momentum states as a qudit, the simplest implementation of the X(d) gate in d dimensions requires a single quantum sorter S(d) and two spiral phase plates. We then extend this construction to a generalised X(d)(p) gate to perform a cyclic permutation of a set of d, equally spaced values {|[Formula: see text] 〉, |[Formula: see text]  + p〉, …, |[Formula: see text]  + (d − 1)p〉} [Formula: see text]  {|[Formula: see text]  + p〉, |[Formula: see text]  + 2p〉, …, |[Formula: see text] 〉}. We find compact implementations for the generalised X(d)(p) gate in both Michelson (one sorter S(d), two spiral phase plates) and Mach-Zehnder configurations (two sorters S(d), two spiral phase plates). Remarkably, the number of spiral phase plates is independent of the qudit dimension d. Our architecture for X(d) and generalised X(d)(p) gate will enable complex quantum algorithms for qudits, for example quantum protocols using photonic OAM states.