Cargando…
On Behind the Physics of the Thermoelectricity of Topological Insulators
Topological Insulators are the best thermoelectric materials involving a sophisticated physics beyond their solid state and electronic structure. We show that exists a topological contribution to the thermoelectric effect that arises between topological and thermal quantum field theories applied at...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474903/ https://www.ncbi.nlm.nih.gov/pubmed/31004104 http://dx.doi.org/10.1038/s41598-019-42744-3 |
Sumario: | Topological Insulators are the best thermoelectric materials involving a sophisticated physics beyond their solid state and electronic structure. We show that exists a topological contribution to the thermoelectric effect that arises between topological and thermal quantum field theories applied at very low energies. This formalism provides us with a quantized topological mass proportional to the temperature T leading, through an electric potential V, to a Seebeck coefficient where we identify an anomalous contribution that can be associated to the creation of real electron-hole Schwinger’s pairs close to the topological bands. Finally, we find a general expression for the dimensionless figure of merit of these topological materials, considering only the electronic contribution, getting a value of 2.73 that is applicable to the Bi(2)Te(3), for which it was reported a value of 2.4 after reducing its phononic contribution, using only the most basic topological numbers (0 or 1). |
---|