Cargando…
Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality
Understanding how to program biological functions into artificial DNA sequences remains a key challenge in synthetic genomics. Here, we report the chemical synthesis and testing of Caulobacter ethensis-2.0 (C. eth-2.0), a rewritten bacterial genome composed of the most fundamental functions of a bac...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6475421/ https://www.ncbi.nlm.nih.gov/pubmed/30936302 http://dx.doi.org/10.1073/pnas.1818259116 |
_version_ | 1783412755061014528 |
---|---|
author | Venetz, Jonathan E. Del Medico, Luca Wölfle, Alexander Schächle, Philipp Bucher, Yves Appert, Donat Tschan, Flavia Flores-Tinoco, Carlos E. van Kooten, Mariëlle Guennoun, Rym Deutsch, Samuel Christen, Matthias Christen, Beat |
author_facet | Venetz, Jonathan E. Del Medico, Luca Wölfle, Alexander Schächle, Philipp Bucher, Yves Appert, Donat Tschan, Flavia Flores-Tinoco, Carlos E. van Kooten, Mariëlle Guennoun, Rym Deutsch, Samuel Christen, Matthias Christen, Beat |
author_sort | Venetz, Jonathan E. |
collection | PubMed |
description | Understanding how to program biological functions into artificial DNA sequences remains a key challenge in synthetic genomics. Here, we report the chemical synthesis and testing of Caulobacter ethensis-2.0 (C. eth-2.0), a rewritten bacterial genome composed of the most fundamental functions of a bacterial cell. We rebuilt the essential genome of Caulobacter crescentus through the process of chemical synthesis rewriting and studied the genetic information content at the level of its essential genes. Within the 785,701-bp genome, we used sequence rewriting to reduce the number of encoded genetic features from 6,290 to 799. Overall, we introduced 133,313 base substitutions, resulting in the rewriting of 123,562 codons. We tested the biological functionality of the genome design in C. crescentus by transposon mutagenesis. Our analysis revealed that 432 essential genes of C. eth-2.0, corresponding to 81.5% of the design, are equal in functionality to natural genes. These findings suggest that neither changing mRNA structure nor changing the codon context have significant influence on biological functionality of synthetic genomes. Discovery of 98 genes that lost their function identified essential genes with incorrect annotation, including a limited set of 27 genes where we uncovered noncoding control features embedded within protein-coding sequences. In sum, our results highlight the promise of chemical synthesis rewriting to decode fundamental genome functions and its utility toward the design of improved organisms for industrial purposes and health benefits. |
format | Online Article Text |
id | pubmed-6475421 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-64754212019-04-26 Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality Venetz, Jonathan E. Del Medico, Luca Wölfle, Alexander Schächle, Philipp Bucher, Yves Appert, Donat Tschan, Flavia Flores-Tinoco, Carlos E. van Kooten, Mariëlle Guennoun, Rym Deutsch, Samuel Christen, Matthias Christen, Beat Proc Natl Acad Sci U S A PNAS Plus Understanding how to program biological functions into artificial DNA sequences remains a key challenge in synthetic genomics. Here, we report the chemical synthesis and testing of Caulobacter ethensis-2.0 (C. eth-2.0), a rewritten bacterial genome composed of the most fundamental functions of a bacterial cell. We rebuilt the essential genome of Caulobacter crescentus through the process of chemical synthesis rewriting and studied the genetic information content at the level of its essential genes. Within the 785,701-bp genome, we used sequence rewriting to reduce the number of encoded genetic features from 6,290 to 799. Overall, we introduced 133,313 base substitutions, resulting in the rewriting of 123,562 codons. We tested the biological functionality of the genome design in C. crescentus by transposon mutagenesis. Our analysis revealed that 432 essential genes of C. eth-2.0, corresponding to 81.5% of the design, are equal in functionality to natural genes. These findings suggest that neither changing mRNA structure nor changing the codon context have significant influence on biological functionality of synthetic genomes. Discovery of 98 genes that lost their function identified essential genes with incorrect annotation, including a limited set of 27 genes where we uncovered noncoding control features embedded within protein-coding sequences. In sum, our results highlight the promise of chemical synthesis rewriting to decode fundamental genome functions and its utility toward the design of improved organisms for industrial purposes and health benefits. National Academy of Sciences 2019-04-16 2019-04-01 /pmc/articles/PMC6475421/ /pubmed/30936302 http://dx.doi.org/10.1073/pnas.1818259116 Text en Copyright © 2019 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | PNAS Plus Venetz, Jonathan E. Del Medico, Luca Wölfle, Alexander Schächle, Philipp Bucher, Yves Appert, Donat Tschan, Flavia Flores-Tinoco, Carlos E. van Kooten, Mariëlle Guennoun, Rym Deutsch, Samuel Christen, Matthias Christen, Beat Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality |
title | Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality |
title_full | Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality |
title_fullStr | Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality |
title_full_unstemmed | Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality |
title_short | Chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality |
title_sort | chemical synthesis rewriting of a bacterial genome to achieve design flexibility and biological functionality |
topic | PNAS Plus |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6475421/ https://www.ncbi.nlm.nih.gov/pubmed/30936302 http://dx.doi.org/10.1073/pnas.1818259116 |
work_keys_str_mv | AT venetzjonathane chemicalsynthesisrewritingofabacterialgenometoachievedesignflexibilityandbiologicalfunctionality AT delmedicoluca chemicalsynthesisrewritingofabacterialgenometoachievedesignflexibilityandbiologicalfunctionality AT wolflealexander chemicalsynthesisrewritingofabacterialgenometoachievedesignflexibilityandbiologicalfunctionality AT schachlephilipp chemicalsynthesisrewritingofabacterialgenometoachievedesignflexibilityandbiologicalfunctionality AT bucheryves chemicalsynthesisrewritingofabacterialgenometoachievedesignflexibilityandbiologicalfunctionality AT appertdonat chemicalsynthesisrewritingofabacterialgenometoachievedesignflexibilityandbiologicalfunctionality AT tschanflavia chemicalsynthesisrewritingofabacterialgenometoachievedesignflexibilityandbiologicalfunctionality AT florestinococarlose chemicalsynthesisrewritingofabacterialgenometoachievedesignflexibilityandbiologicalfunctionality AT vankootenmarielle chemicalsynthesisrewritingofabacterialgenometoachievedesignflexibilityandbiologicalfunctionality AT guennounrym chemicalsynthesisrewritingofabacterialgenometoachievedesignflexibilityandbiologicalfunctionality AT deutschsamuel chemicalsynthesisrewritingofabacterialgenometoachievedesignflexibilityandbiologicalfunctionality AT christenmatthias chemicalsynthesisrewritingofabacterialgenometoachievedesignflexibilityandbiologicalfunctionality AT christenbeat chemicalsynthesisrewritingofabacterialgenometoachievedesignflexibilityandbiologicalfunctionality |