Cargando…

Alone at last! – Heterologous expression of a single gene is sufficient for establishing the five-step Weimberg pathway in Corynebacterium glutamicum

Corynebacterium glutamicum can grow on d-xylose as sole carbon and energy source via the five-step Weimberg pathway when the pentacistronic xylXABCD operon from Caulobacter crescentus is heterologously expressed. More recently, it could be demonstrated that the C. glutamicum wild type accumulates th...

Descripción completa

Detalles Bibliográficos
Autores principales: Brüsseler, Christian, Späth, Anja, Sokolowsky, Sascha, Marienhagen, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6475665/
https://www.ncbi.nlm.nih.gov/pubmed/31016135
http://dx.doi.org/10.1016/j.mec.2019.e00090
_version_ 1783412786750029824
author Brüsseler, Christian
Späth, Anja
Sokolowsky, Sascha
Marienhagen, Jan
author_facet Brüsseler, Christian
Späth, Anja
Sokolowsky, Sascha
Marienhagen, Jan
author_sort Brüsseler, Christian
collection PubMed
description Corynebacterium glutamicum can grow on d-xylose as sole carbon and energy source via the five-step Weimberg pathway when the pentacistronic xylXABCD operon from Caulobacter crescentus is heterologously expressed. More recently, it could be demonstrated that the C. glutamicum wild type accumulates the Weimberg pathway intermediate d-xylonate when cultivated in the presence of d-xylose. Reason for this is the activity of the endogenous dehydrogenase IolG, which can also oxidize d-xylose. This raised the question whether additional endogenous enzymes in C. glutamicum contribute to the catabolization of d-xylose via the Weimberg pathway. In this study, analysis of the C. glutamicum genome in combination with systematic reduction of the heterologous xylXABCD operon revealed that the hitherto unknown and endogenous dehydrogenase KsaD (Cg0535) can also oxidize α-ketoglutarate semialdehyde to the tricarboxylic acid cycle intermediate α-ketoglutarate, the final enzymatic step of the Weimberg pathway. Furthermore, heterologous expression of either xylX or xylD, encoding for the two dehydratases of the Weimberg pathway in C. crescentus, is sufficient for enabling C. glutamicum to grow on d-xylose as sole carbon and energy source. Finally, several variants for the carbon-efficient microbial production of α-ketoglutarate from d-xylose were constructed. In comparison to cultivation solely on d-glucose, the best strain accumulated up to 1.5-fold more α-ketoglutarate in d-xylose/d-glucose mixtures.
format Online
Article
Text
id pubmed-6475665
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-64756652019-04-23 Alone at last! – Heterologous expression of a single gene is sufficient for establishing the five-step Weimberg pathway in Corynebacterium glutamicum Brüsseler, Christian Späth, Anja Sokolowsky, Sascha Marienhagen, Jan Metab Eng Commun Article Corynebacterium glutamicum can grow on d-xylose as sole carbon and energy source via the five-step Weimberg pathway when the pentacistronic xylXABCD operon from Caulobacter crescentus is heterologously expressed. More recently, it could be demonstrated that the C. glutamicum wild type accumulates the Weimberg pathway intermediate d-xylonate when cultivated in the presence of d-xylose. Reason for this is the activity of the endogenous dehydrogenase IolG, which can also oxidize d-xylose. This raised the question whether additional endogenous enzymes in C. glutamicum contribute to the catabolization of d-xylose via the Weimberg pathway. In this study, analysis of the C. glutamicum genome in combination with systematic reduction of the heterologous xylXABCD operon revealed that the hitherto unknown and endogenous dehydrogenase KsaD (Cg0535) can also oxidize α-ketoglutarate semialdehyde to the tricarboxylic acid cycle intermediate α-ketoglutarate, the final enzymatic step of the Weimberg pathway. Furthermore, heterologous expression of either xylX or xylD, encoding for the two dehydratases of the Weimberg pathway in C. crescentus, is sufficient for enabling C. glutamicum to grow on d-xylose as sole carbon and energy source. Finally, several variants for the carbon-efficient microbial production of α-ketoglutarate from d-xylose were constructed. In comparison to cultivation solely on d-glucose, the best strain accumulated up to 1.5-fold more α-ketoglutarate in d-xylose/d-glucose mixtures. Elsevier 2019-04-10 /pmc/articles/PMC6475665/ /pubmed/31016135 http://dx.doi.org/10.1016/j.mec.2019.e00090 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Brüsseler, Christian
Späth, Anja
Sokolowsky, Sascha
Marienhagen, Jan
Alone at last! – Heterologous expression of a single gene is sufficient for establishing the five-step Weimberg pathway in Corynebacterium glutamicum
title Alone at last! – Heterologous expression of a single gene is sufficient for establishing the five-step Weimberg pathway in Corynebacterium glutamicum
title_full Alone at last! – Heterologous expression of a single gene is sufficient for establishing the five-step Weimberg pathway in Corynebacterium glutamicum
title_fullStr Alone at last! – Heterologous expression of a single gene is sufficient for establishing the five-step Weimberg pathway in Corynebacterium glutamicum
title_full_unstemmed Alone at last! – Heterologous expression of a single gene is sufficient for establishing the five-step Weimberg pathway in Corynebacterium glutamicum
title_short Alone at last! – Heterologous expression of a single gene is sufficient for establishing the five-step Weimberg pathway in Corynebacterium glutamicum
title_sort alone at last! – heterologous expression of a single gene is sufficient for establishing the five-step weimberg pathway in corynebacterium glutamicum
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6475665/
https://www.ncbi.nlm.nih.gov/pubmed/31016135
http://dx.doi.org/10.1016/j.mec.2019.e00090
work_keys_str_mv AT brusselerchristian aloneatlastheterologousexpressionofasinglegeneissufficientforestablishingthefivestepweimbergpathwayincorynebacteriumglutamicum
AT spathanja aloneatlastheterologousexpressionofasinglegeneissufficientforestablishingthefivestepweimbergpathwayincorynebacteriumglutamicum
AT sokolowskysascha aloneatlastheterologousexpressionofasinglegeneissufficientforestablishingthefivestepweimbergpathwayincorynebacteriumglutamicum
AT marienhagenjan aloneatlastheterologousexpressionofasinglegeneissufficientforestablishingthefivestepweimbergpathwayincorynebacteriumglutamicum