Cargando…
Oncogenic microRNA-411 promotes lung carcinogenesis by directly targeting suppressor genes SPRY4 and TXNIP
Lung cancer is one of the most common malignant diseases globally, composed of non-small cell lung cancer (NSCLC, 85%) and small cell lung cancer (SCLC, 15%). MicroRNAs (miRNAs) are single-stranded noncoding RNAs having important roles in lung cancer development. miR-411-5p/3p were reported to be in...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6475890/ https://www.ncbi.nlm.nih.gov/pubmed/30390072 http://dx.doi.org/10.1038/s41388-018-0534-3 |
Sumario: | Lung cancer is one of the most common malignant diseases globally, composed of non-small cell lung cancer (NSCLC, 85%) and small cell lung cancer (SCLC, 15%). MicroRNAs (miRNAs) are single-stranded noncoding RNAs having important roles in lung cancer development. miR-411-5p/3p were reported to be increased significantly in human NSCLC tissues and cell lines. Moreover, miR-411-5p/3p overexpression could accelerate cell proliferation and migration, and impede cell apoptosis in NSCLC cell lines. Mechanically, SPRY4 is confirmed a direct target of miR-411-5p/3p. Furthermore, our findings showed that miR-411-5p/3p promoted lung tumor growth in vivo, decreased SPRY4 expression dramatically, and induced EGFR, AKT signaling activation, as well as epithelial–mesenchymal transition (EMT) simultaneously in tumor tissues. In addition, we showed that miR-411-5p also targeted tumor suppressor TXNIP, involved in regulating positively cell cycle progress in SPC-A1 cells rather than in H1299. Whether cell specificity of low TXNIP mRNA level in H1299 is responsible for the different response to cell cycle between H1299 and SPC-A1 would need further explorations. Collectively, these results suggest that miR-411-5p/3p are required for NSCLC development by suppressing SPRY4 and TXNIP; thus, the miR-411-SPRY4-AKT axis might act as a promising target for lung cancer therapy clinically. |
---|