Cargando…
Evidence of Blood and Muscle Redox Status Imbalance in Experimentally Induced Renal Insufficiency in a Rabbit Model
Chronic kidney disease (CKD) is accompanied by a disturbed redox homeostasis, especially in end-stage patients, which is associated with pathological complications such as anemia, atherosclerosis, and muscle atrophy. However, limited evidence exists about redox disturbances before the end stage of C...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6476063/ https://www.ncbi.nlm.nih.gov/pubmed/31089418 http://dx.doi.org/10.1155/2019/8219283 |
_version_ | 1783412843432902656 |
---|---|
author | Poulianiti, Konstantina P. Karioti, Aggeliki Kaltsatou, Antonia Mitrou, Georgia I. Koutedakis, Yiannis Tepetes, Konstantinos Christodoulidis, Grigoris Giakas, Giannis Maridaki, Maria D. Stefanidis, Ioannis Jamurtas, Athanasios Z. Sakkas, Giorgos K. Karatzaferi, Christina |
author_facet | Poulianiti, Konstantina P. Karioti, Aggeliki Kaltsatou, Antonia Mitrou, Georgia I. Koutedakis, Yiannis Tepetes, Konstantinos Christodoulidis, Grigoris Giakas, Giannis Maridaki, Maria D. Stefanidis, Ioannis Jamurtas, Athanasios Z. Sakkas, Giorgos K. Karatzaferi, Christina |
author_sort | Poulianiti, Konstantina P. |
collection | PubMed |
description | Chronic kidney disease (CKD) is accompanied by a disturbed redox homeostasis, especially in end-stage patients, which is associated with pathological complications such as anemia, atherosclerosis, and muscle atrophy. However, limited evidence exists about redox disturbances before the end stage of CKD. Moreover, the available redox literature has not yet provided clear associations between circulating and tissue-specific (muscle) oxidative stress levels. The aim of the study was to evaluate commonly used redox status indices in the blood and in two different types of skeletal muscle (psoas, soleus) in the predialysis stages of CKD, using an animal model of renal insufficiency, and to investigate whether blood redox status indices could be reflecting the skeletal muscle redox status. Indices evaluated included reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione reductase (GR), catalase (CAT), total antioxidant capacity (TAC), protein carbonyls (PC), and thiobarbituric acid reactive substances (TBARS). Results showed that blood GSH was higher in the uremic group compared to the control (17.50 ± 1.73 vs. 12.43 ± 1.01, p = 0.033). In both muscle types, PC levels were higher in the uremic group compared to the control (psoas: 1.086 ± 0.294 vs. 0.596 ± 0.372, soleus: 2.52 ± 0.29 vs. 0.929 ± 0.41, p < 0.05). The soleus had higher levels of TBARS, PC, GSH, CAT, and GR and lower TAC compared to the psoas in both groups. No significant correlations in redox status indices between the blood and skeletal muscles were found. However, in the uremic group, significant correlations between the psoas and soleus muscles in PC, GSSG, and CAT levels emerged, not present in the control. Even in the early stages of CKD, a disturbance in redox homeostasis was observed, which seemed to be muscle type-specific, while blood levels of redox indices did not seem to reflect the intramuscular condition. The above results highlight the need for further research in order to identify the key mechanisms driving the onset and progression of oxidative stress and its detrimental effects on CKD patients. |
format | Online Article Text |
id | pubmed-6476063 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-64760632019-05-14 Evidence of Blood and Muscle Redox Status Imbalance in Experimentally Induced Renal Insufficiency in a Rabbit Model Poulianiti, Konstantina P. Karioti, Aggeliki Kaltsatou, Antonia Mitrou, Georgia I. Koutedakis, Yiannis Tepetes, Konstantinos Christodoulidis, Grigoris Giakas, Giannis Maridaki, Maria D. Stefanidis, Ioannis Jamurtas, Athanasios Z. Sakkas, Giorgos K. Karatzaferi, Christina Oxid Med Cell Longev Research Article Chronic kidney disease (CKD) is accompanied by a disturbed redox homeostasis, especially in end-stage patients, which is associated with pathological complications such as anemia, atherosclerosis, and muscle atrophy. However, limited evidence exists about redox disturbances before the end stage of CKD. Moreover, the available redox literature has not yet provided clear associations between circulating and tissue-specific (muscle) oxidative stress levels. The aim of the study was to evaluate commonly used redox status indices in the blood and in two different types of skeletal muscle (psoas, soleus) in the predialysis stages of CKD, using an animal model of renal insufficiency, and to investigate whether blood redox status indices could be reflecting the skeletal muscle redox status. Indices evaluated included reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione reductase (GR), catalase (CAT), total antioxidant capacity (TAC), protein carbonyls (PC), and thiobarbituric acid reactive substances (TBARS). Results showed that blood GSH was higher in the uremic group compared to the control (17.50 ± 1.73 vs. 12.43 ± 1.01, p = 0.033). In both muscle types, PC levels were higher in the uremic group compared to the control (psoas: 1.086 ± 0.294 vs. 0.596 ± 0.372, soleus: 2.52 ± 0.29 vs. 0.929 ± 0.41, p < 0.05). The soleus had higher levels of TBARS, PC, GSH, CAT, and GR and lower TAC compared to the psoas in both groups. No significant correlations in redox status indices between the blood and skeletal muscles were found. However, in the uremic group, significant correlations between the psoas and soleus muscles in PC, GSSG, and CAT levels emerged, not present in the control. Even in the early stages of CKD, a disturbance in redox homeostasis was observed, which seemed to be muscle type-specific, while blood levels of redox indices did not seem to reflect the intramuscular condition. The above results highlight the need for further research in order to identify the key mechanisms driving the onset and progression of oxidative stress and its detrimental effects on CKD patients. Hindawi 2019-04-04 /pmc/articles/PMC6476063/ /pubmed/31089418 http://dx.doi.org/10.1155/2019/8219283 Text en Copyright © 2019 Konstantina P. Poulianiti et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Poulianiti, Konstantina P. Karioti, Aggeliki Kaltsatou, Antonia Mitrou, Georgia I. Koutedakis, Yiannis Tepetes, Konstantinos Christodoulidis, Grigoris Giakas, Giannis Maridaki, Maria D. Stefanidis, Ioannis Jamurtas, Athanasios Z. Sakkas, Giorgos K. Karatzaferi, Christina Evidence of Blood and Muscle Redox Status Imbalance in Experimentally Induced Renal Insufficiency in a Rabbit Model |
title | Evidence of Blood and Muscle Redox Status Imbalance in Experimentally Induced Renal Insufficiency in a Rabbit Model |
title_full | Evidence of Blood and Muscle Redox Status Imbalance in Experimentally Induced Renal Insufficiency in a Rabbit Model |
title_fullStr | Evidence of Blood and Muscle Redox Status Imbalance in Experimentally Induced Renal Insufficiency in a Rabbit Model |
title_full_unstemmed | Evidence of Blood and Muscle Redox Status Imbalance in Experimentally Induced Renal Insufficiency in a Rabbit Model |
title_short | Evidence of Blood and Muscle Redox Status Imbalance in Experimentally Induced Renal Insufficiency in a Rabbit Model |
title_sort | evidence of blood and muscle redox status imbalance in experimentally induced renal insufficiency in a rabbit model |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6476063/ https://www.ncbi.nlm.nih.gov/pubmed/31089418 http://dx.doi.org/10.1155/2019/8219283 |
work_keys_str_mv | AT poulianitikonstantinap evidenceofbloodandmuscleredoxstatusimbalanceinexperimentallyinducedrenalinsufficiencyinarabbitmodel AT kariotiaggeliki evidenceofbloodandmuscleredoxstatusimbalanceinexperimentallyinducedrenalinsufficiencyinarabbitmodel AT kaltsatouantonia evidenceofbloodandmuscleredoxstatusimbalanceinexperimentallyinducedrenalinsufficiencyinarabbitmodel AT mitrougeorgiai evidenceofbloodandmuscleredoxstatusimbalanceinexperimentallyinducedrenalinsufficiencyinarabbitmodel AT koutedakisyiannis evidenceofbloodandmuscleredoxstatusimbalanceinexperimentallyinducedrenalinsufficiencyinarabbitmodel AT tepeteskonstantinos evidenceofbloodandmuscleredoxstatusimbalanceinexperimentallyinducedrenalinsufficiencyinarabbitmodel AT christodoulidisgrigoris evidenceofbloodandmuscleredoxstatusimbalanceinexperimentallyinducedrenalinsufficiencyinarabbitmodel AT giakasgiannis evidenceofbloodandmuscleredoxstatusimbalanceinexperimentallyinducedrenalinsufficiencyinarabbitmodel AT maridakimariad evidenceofbloodandmuscleredoxstatusimbalanceinexperimentallyinducedrenalinsufficiencyinarabbitmodel AT stefanidisioannis evidenceofbloodandmuscleredoxstatusimbalanceinexperimentallyinducedrenalinsufficiencyinarabbitmodel AT jamurtasathanasiosz evidenceofbloodandmuscleredoxstatusimbalanceinexperimentallyinducedrenalinsufficiencyinarabbitmodel AT sakkasgiorgosk evidenceofbloodandmuscleredoxstatusimbalanceinexperimentallyinducedrenalinsufficiencyinarabbitmodel AT karatzaferichristina evidenceofbloodandmuscleredoxstatusimbalanceinexperimentallyinducedrenalinsufficiencyinarabbitmodel |