Cargando…
Theta Oscillations Alternate With High Amplitude Neocortical Population Within Synchronized States
Synchronized states are marked by large-amplitude low-frequency oscillations in the cortex. These states can be seen during quiet waking or slow-wave sleep. Within synchronized states, previous studies have noted a plethora of different types of activity, including delta oscillations (0.5–4 Hz) and...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6476345/ https://www.ncbi.nlm.nih.gov/pubmed/31037053 http://dx.doi.org/10.3389/fnins.2019.00316 |
_version_ | 1783412887684907008 |
---|---|
author | Munro Krull, Erin Sakata, Shuzo Toyoizumi, Taro |
author_facet | Munro Krull, Erin Sakata, Shuzo Toyoizumi, Taro |
author_sort | Munro Krull, Erin |
collection | PubMed |
description | Synchronized states are marked by large-amplitude low-frequency oscillations in the cortex. These states can be seen during quiet waking or slow-wave sleep. Within synchronized states, previous studies have noted a plethora of different types of activity, including delta oscillations (0.5–4 Hz) and slow oscillations (<1 Hz) in the neocortex and large- and small- irregular activity in the hippocampus. However, it is not still fully characterized how neural populations contribute to the synchronized state. Here we apply independent component analysis to parse which populations are involved in different kinds of neocortical activity, and find two populations that alternate throughout synchronized states. One population broadly affects neocortical deep layers, and is associated with larger amplitude slower neocortical oscillations. The other population exhibits theta-frequency oscillations that are not easily observed in raw field potential recordings. These theta oscillations apparently come from below the neocortex, suggesting hippocampal origin, and are associated with smaller amplitude faster neocortical oscillations. Relative involvement of these two alternating populations may indicate different modes of operation within synchronized states. |
format | Online Article Text |
id | pubmed-6476345 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-64763452019-04-29 Theta Oscillations Alternate With High Amplitude Neocortical Population Within Synchronized States Munro Krull, Erin Sakata, Shuzo Toyoizumi, Taro Front Neurosci Neuroscience Synchronized states are marked by large-amplitude low-frequency oscillations in the cortex. These states can be seen during quiet waking or slow-wave sleep. Within synchronized states, previous studies have noted a plethora of different types of activity, including delta oscillations (0.5–4 Hz) and slow oscillations (<1 Hz) in the neocortex and large- and small- irregular activity in the hippocampus. However, it is not still fully characterized how neural populations contribute to the synchronized state. Here we apply independent component analysis to parse which populations are involved in different kinds of neocortical activity, and find two populations that alternate throughout synchronized states. One population broadly affects neocortical deep layers, and is associated with larger amplitude slower neocortical oscillations. The other population exhibits theta-frequency oscillations that are not easily observed in raw field potential recordings. These theta oscillations apparently come from below the neocortex, suggesting hippocampal origin, and are associated with smaller amplitude faster neocortical oscillations. Relative involvement of these two alternating populations may indicate different modes of operation within synchronized states. Frontiers Media S.A. 2019-04-12 /pmc/articles/PMC6476345/ /pubmed/31037053 http://dx.doi.org/10.3389/fnins.2019.00316 Text en Copyright © 2019 Munro Krull, Sakata and Toyoizumi. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Munro Krull, Erin Sakata, Shuzo Toyoizumi, Taro Theta Oscillations Alternate With High Amplitude Neocortical Population Within Synchronized States |
title | Theta Oscillations Alternate With High Amplitude Neocortical Population Within Synchronized States |
title_full | Theta Oscillations Alternate With High Amplitude Neocortical Population Within Synchronized States |
title_fullStr | Theta Oscillations Alternate With High Amplitude Neocortical Population Within Synchronized States |
title_full_unstemmed | Theta Oscillations Alternate With High Amplitude Neocortical Population Within Synchronized States |
title_short | Theta Oscillations Alternate With High Amplitude Neocortical Population Within Synchronized States |
title_sort | theta oscillations alternate with high amplitude neocortical population within synchronized states |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6476345/ https://www.ncbi.nlm.nih.gov/pubmed/31037053 http://dx.doi.org/10.3389/fnins.2019.00316 |
work_keys_str_mv | AT munrokrullerin thetaoscillationsalternatewithhighamplitudeneocorticalpopulationwithinsynchronizedstates AT sakatashuzo thetaoscillationsalternatewithhighamplitudeneocorticalpopulationwithinsynchronizedstates AT toyoizumitaro thetaoscillationsalternatewithhighamplitudeneocorticalpopulationwithinsynchronizedstates |