Cargando…

A unique life-strategy of an endophytic yeast Rhodotorula mucilaginosa JGTA-S1—a comparative genomics viewpoint

Endophytic yeasts of genus Rhodotorula are gaining importance for their ability to improve plant growth. The nature of their interaction with plants, however, remains unknown. Rhodotorula mucilaginosa JGTA-S1 was isolated as an endophyte of Typha angustifolia and promoted growth in the host. To inve...

Descripción completa

Detalles Bibliográficos
Autores principales: Sen, Diya, Paul, Karnelia, Saha, Chinmay, Mukherjee, Gairik, Nag, Mayurakshi, Ghosh, Samrat, Das, Abhishek, Seal, Anindita, Tripathy, Sucheta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6476726/
https://www.ncbi.nlm.nih.gov/pubmed/30615101
http://dx.doi.org/10.1093/dnares/dsy044
Descripción
Sumario:Endophytic yeasts of genus Rhodotorula are gaining importance for their ability to improve plant growth. The nature of their interaction with plants, however, remains unknown. Rhodotorula mucilaginosa JGTA-S1 was isolated as an endophyte of Typha angustifolia and promoted growth in the host. To investigate the life-strategy of the yeast from a genomics perspective, we used Illumina and Oxford Nanopore reads to generate a high-quality annotated draft assembly of JGTA-S1 and compared its genome to three other Rhodotorula yeasts and the close relative Rhodosporidium toruloides. JGTA-S1 is a haploid yeast possessing several genes potentially facilitating its endophytic lifestyle such as those responsible for solubilizing phosphate and producing phytohormones. An intact mating-locus in JGTA-S1 raised the possibility of a yet unknown sexual reproductive cycle in Rhodotorula yeasts. Additionally, JGTA-S1 had functional anti-freezing genes and was also unique in lacking a functional nitrate-assimilation pathway—a feature that is associated with obligate biotrophs. Nitrogen-fixing endobacteria were found within JGTA-S1 that may circumvent this defective N-metabolism. JGTA-S1 genome data coupled with experimental evidence give us an insight into the nature of its beneficial interaction with plants.