Cargando…

Targeting Neuroplasticity, Cardiovascular, and Cognitive-Associated Genomic Variants in Familial Alzheimer’s Disease

The identification of novel genetic variants contributing to the widespread in the age of onset (AOO) of Alzheimer’s disease (AD) could aid in the prognosis and/or development of new therapeutic strategies focused on early interventions. We recruited 78 individuals with AD from the Paisa genetic iso...

Descripción completa

Detalles Bibliográficos
Autores principales: Vélez, Jorge I., Lopera, Francisco, Creagh, Penelope K., Piñeros, Laura B., Das, Debjani, Cervantes-Henríquez, Martha L., Acosta-López, Johan E., Isaza-Ruget, Mario A., Espinosa, Lady G., Easteal, Simon, Quintero, Gustavo A., Silva, Claudia Tamar, Mastronardi, Claudio A., Arcos-Burgos, Mauricio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6476862/
https://www.ncbi.nlm.nih.gov/pubmed/30112632
http://dx.doi.org/10.1007/s12035-018-1298-z
Descripción
Sumario:The identification of novel genetic variants contributing to the widespread in the age of onset (AOO) of Alzheimer’s disease (AD) could aid in the prognosis and/or development of new therapeutic strategies focused on early interventions. We recruited 78 individuals with AD from the Paisa genetic isolate in Antioquia, Colombia. These individuals belong to the world largest multigenerational and extended pedigree segregating AD as a consequence of a dominant fully penetrant mutation in the PSEN1 gene and exhibit an AOO ranging from the early 1930s to the late 1970s. To shed light on the genetic underpinning that could explain the large spread of the age of onset (AOO) of AD, 64 single nucleotide polymorphisms (SNP) associated with neuroanatomical, cardiovascular, and cognitive measures in AD were genotyped. Standard quality control and filtering procedures were applied, and single- and multi-locus linear mixed-effects models were used to identify AOO-associated SNPs. A full two-locus interaction model was fitted to define how identified SNPs interact to modulate AOO. We identified two key epistatic interactions between the APOE*E2 allele and SNPs ASTN2-rs7852878 and SNTG1-rs16914781 that delay AOO by up to ~ 8 years (95% CI 3.2–12.7, P = 1.83 × 10(−3)) and ~ 7.6 years (95% CI 3.3–11.8, P = 8.69 × 10(−4)), respectively, and validated our previous finding indicating that APOE*E2 delays AOO of AD in PSEN1 E280 mutation carriers. This new evidence involving APOE*E2 as an AOO delayer could be used for developing precision medicine approaches and predictive genomics models to potentially determine AOO in individuals genetically predisposed to AD. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s12035-018-1298-z) contains supplementary material, which is available to authorized users.