Cargando…
Comparison of Deep Learning Approaches for Multi-Label Chest X-Ray Classification
The increased availability of labeled X-ray image archives (e.g. ChestX-ray14 dataset) has triggered a growing interest in deep learning techniques. To provide better insight into the different approaches, and their applications to chest X-ray classification, we investigate a powerful network archit...
Autores principales: | Baltruschat, Ivo M., Nickisch, Hannes, Grass, Michael, Knopp, Tobias, Saalbach, Axel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6476887/ https://www.ncbi.nlm.nih.gov/pubmed/31011155 http://dx.doi.org/10.1038/s41598-019-42294-8 |
Ejemplares similares
-
Smart chest X-ray worklist prioritization using artificial intelligence: a clinical workflow simulation
por: Baltruschat, Ivo, et al.
Publicado: (2020) -
AI-driven deep CNN approach for multi-label pathology classification using chest X-Rays
por: Albahli, Saleh, et al.
Publicado: (2021) -
Defending against Reconstruction Attacks through Differentially Private Federated Learning for Classification of Heterogeneous Chest X-ray Data
por: Ziegler, Joceline, et al.
Publicado: (2022) -
Multi-Label Classification of Chest X-ray Abnormalities Using Transfer Learning Techniques
por: Kufel, Jakub, et al.
Publicado: (2023) -
Deep Learning Classification of Tuberculosis Chest X-rays
por: Goswami, Kartik K, et al.
Publicado: (2023)