Cargando…
The Promises and Pitfalls of Machine Learning for Detecting Viruses in Aquatic Metagenomes
Tools allowing for the identification of viral sequences in host-associated and environmental metagenomes allows for a better understanding of the genetics and ecology of viruses and their hosts. Recently, new approaches using machine learning methods to distinguish viral from bacterial signal using...
Autores principales: | Ponsero, Alise J., Hurwitz, Bonnie L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6477088/ https://www.ncbi.nlm.nih.gov/pubmed/31057513 http://dx.doi.org/10.3389/fmicb.2019.00806 |
Ejemplares similares
-
Evaluation of computational phage detection tools for metagenomic datasets
por: Schackart, Kenneth E., et al.
Publicado: (2023) -
Ontology-driven analysis of marine metagenomics: what more can we learn from our data?
por: Blumberg, Kai, et al.
Publicado: (2023) -
Ontology-Enriched Specifications Enabling Findable, Accessible, Interoperable, and Reusable Marine Metagenomic Datasets in Cyberinfrastructure Systems
por: Blumberg, Kai L., et al.
Publicado: (2021) -
Comparison of k-mer-based de novo comparative metagenomic tools and approaches
por: Ponsero, Alise Jany, et al.
Publicado: (2023) -
Libra: scalable k-mer–based tool for massive all-vs-all metagenome comparisons
por: Choi, Illyoung, et al.
Publicado: (2018)