Cargando…
Molecular Network Analysis of the Urinary Proteome of Alzheimer's Disease Patients
BACKGROUND/AIMS: The identification of predictive biomarkers for Alzheimer's disease (AD) from urine would aid in screening for the disease, but information about biological and pathophysiological changes in the urine of AD patients is limited. This study aimed to explore the comprehensive prof...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
S. Karger AG
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6477484/ https://www.ncbi.nlm.nih.gov/pubmed/31043964 http://dx.doi.org/10.1159/000496100 |
_version_ | 1783413026194456576 |
---|---|
author | Watanabe, Yumi Hirao, Yoshitoshi Kasuga, Kensaku Tokutake, Takayoshi Semizu, Yuka Kitamura, Kaori Ikeuchi, Takeshi Nakamura, Kazutoshi Yamamoto, Tadashi |
author_facet | Watanabe, Yumi Hirao, Yoshitoshi Kasuga, Kensaku Tokutake, Takayoshi Semizu, Yuka Kitamura, Kaori Ikeuchi, Takeshi Nakamura, Kazutoshi Yamamoto, Tadashi |
author_sort | Watanabe, Yumi |
collection | PubMed |
description | BACKGROUND/AIMS: The identification of predictive biomarkers for Alzheimer's disease (AD) from urine would aid in screening for the disease, but information about biological and pathophysiological changes in the urine of AD patients is limited. This study aimed to explore the comprehensive profile and molecular network relations of urinary proteins in AD patients. METHODS: Urine samples collected from 18 AD patients and 18 age- and sex-matched cognitively normal controls were analyzed by mass spectrometry and semiquantified with the normalized spectral index method. Bioinformatics analyses were performed on proteins which significantly increased by more than 2-fold or decreased by less than 0.5-fold compared to the control (p < 0.05) using DAVID bioinformatics resources and KeyMolnet software. RESULTS: The levels of 109 proteins significantly differed between AD patients and controls. Among these, annotation clusters related to lysosomes, complement activation, and gluconeogenesis were significantly enriched. The molecular relation networks derived from these proteins were mainly associated with pathways of lipoprotein metabolism, heat shock protein 90 signaling, matrix metalloproteinase signaling, and redox regulation by thioredoxin. CONCLUSION: Our findings suggest that changes in the urinary proteome of AD patients reflect systemic changes related to AD pathophysiology. |
format | Online Article Text |
id | pubmed-6477484 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | S. Karger AG |
record_format | MEDLINE/PubMed |
spelling | pubmed-64774842019-05-01 Molecular Network Analysis of the Urinary Proteome of Alzheimer's Disease Patients Watanabe, Yumi Hirao, Yoshitoshi Kasuga, Kensaku Tokutake, Takayoshi Semizu, Yuka Kitamura, Kaori Ikeuchi, Takeshi Nakamura, Kazutoshi Yamamoto, Tadashi Dement Geriatr Cogn Dis Extra Original Research Article BACKGROUND/AIMS: The identification of predictive biomarkers for Alzheimer's disease (AD) from urine would aid in screening for the disease, but information about biological and pathophysiological changes in the urine of AD patients is limited. This study aimed to explore the comprehensive profile and molecular network relations of urinary proteins in AD patients. METHODS: Urine samples collected from 18 AD patients and 18 age- and sex-matched cognitively normal controls were analyzed by mass spectrometry and semiquantified with the normalized spectral index method. Bioinformatics analyses were performed on proteins which significantly increased by more than 2-fold or decreased by less than 0.5-fold compared to the control (p < 0.05) using DAVID bioinformatics resources and KeyMolnet software. RESULTS: The levels of 109 proteins significantly differed between AD patients and controls. Among these, annotation clusters related to lysosomes, complement activation, and gluconeogenesis were significantly enriched. The molecular relation networks derived from these proteins were mainly associated with pathways of lipoprotein metabolism, heat shock protein 90 signaling, matrix metalloproteinase signaling, and redox regulation by thioredoxin. CONCLUSION: Our findings suggest that changes in the urinary proteome of AD patients reflect systemic changes related to AD pathophysiology. S. Karger AG 2019-02-08 /pmc/articles/PMC6477484/ /pubmed/31043964 http://dx.doi.org/10.1159/000496100 Text en Copyright © 2019 by S. Karger AG, Basel http://creativecommons.org/licenses/by-nc-nd/4.0/ This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND) (http://www.karger.com/Services/OpenAccessLicense). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. |
spellingShingle | Original Research Article Watanabe, Yumi Hirao, Yoshitoshi Kasuga, Kensaku Tokutake, Takayoshi Semizu, Yuka Kitamura, Kaori Ikeuchi, Takeshi Nakamura, Kazutoshi Yamamoto, Tadashi Molecular Network Analysis of the Urinary Proteome of Alzheimer's Disease Patients |
title | Molecular Network Analysis of the Urinary Proteome of Alzheimer's Disease Patients |
title_full | Molecular Network Analysis of the Urinary Proteome of Alzheimer's Disease Patients |
title_fullStr | Molecular Network Analysis of the Urinary Proteome of Alzheimer's Disease Patients |
title_full_unstemmed | Molecular Network Analysis of the Urinary Proteome of Alzheimer's Disease Patients |
title_short | Molecular Network Analysis of the Urinary Proteome of Alzheimer's Disease Patients |
title_sort | molecular network analysis of the urinary proteome of alzheimer's disease patients |
topic | Original Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6477484/ https://www.ncbi.nlm.nih.gov/pubmed/31043964 http://dx.doi.org/10.1159/000496100 |
work_keys_str_mv | AT watanabeyumi molecularnetworkanalysisoftheurinaryproteomeofalzheimersdiseasepatients AT hiraoyoshitoshi molecularnetworkanalysisoftheurinaryproteomeofalzheimersdiseasepatients AT kasugakensaku molecularnetworkanalysisoftheurinaryproteomeofalzheimersdiseasepatients AT tokutaketakayoshi molecularnetworkanalysisoftheurinaryproteomeofalzheimersdiseasepatients AT semizuyuka molecularnetworkanalysisoftheurinaryproteomeofalzheimersdiseasepatients AT kitamurakaori molecularnetworkanalysisoftheurinaryproteomeofalzheimersdiseasepatients AT ikeuchitakeshi molecularnetworkanalysisoftheurinaryproteomeofalzheimersdiseasepatients AT nakamurakazutoshi molecularnetworkanalysisoftheurinaryproteomeofalzheimersdiseasepatients AT yamamototadashi molecularnetworkanalysisoftheurinaryproteomeofalzheimersdiseasepatients |