Cargando…

Real-Time Monitoring of Interactions between Solid-Supported Lipid Vesicle Layers and Short- and Medium-Chain Length Alcohols: Ethanol and 1-Pentanol

Lipid bilayers represent the interface between the cell and its environment, serving as model systems for the study of various biological processes. For instance, the addition of small molecules such as alcohols is a well-known process that modulates lipid bilayer properties, being considered as a r...

Descripción completa

Detalles Bibliográficos
Autores principales: Neupane, Shova, Cordoyiannis, George, Renner, Frank Uwe, Losada-Pérez, Patricia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6477617/
https://www.ncbi.nlm.nih.gov/pubmed/31105194
http://dx.doi.org/10.3390/biomimetics4010008
Descripción
Sumario:Lipid bilayers represent the interface between the cell and its environment, serving as model systems for the study of various biological processes. For instance, the addition of small molecules such as alcohols is a well-known process that modulates lipid bilayer properties, being considered as a reference for general anesthetic molecules. A plethora of experimental and simulation studies have focused on alcohol’s effect on lipid bilayers. Nevertheless, most studies have focused on lipid membranes formed in the presence of alcohols, while the effect of n-alcohols on preformed lipid membranes has received much less research interest. Here, we monitor the real-time interaction of short-chain alcohols with solid-supported vesicles of dipalmitoylphosphatidylcholine (DPPC) using quartz crystal microbalance with dissipation monitoring (QCM-D) as a label-free method. Results indicate that the addition of ethanol at different concentrations induces changes in the bilayer organization but preserves the stability of the supported vesicle layer. In turn, the addition of 1-pentanol induces not only changes in the bilayer organization, but also promotes vesicle rupture and inhomogeneous lipid layers at very high concentrations.