Cargando…
Implementation of Deep Deterministic Policy Gradients for Controlling Dynamic Bipedal Walking
A control system for bipedal walking in the sagittal plane was developed in simulation. The biped model was built based on anthropometric data for a 1.8 m tall male of average build. At the core of the controller is a deep deterministic policy gradient (DDPG) neural network that was trained in GAZEB...
Autores principales: | Liu, Chujun, Lonsberry, Andrew G., Nandor, Mark J., Audu, Musa L., Lonsberry, Alexander J., Quinn, Roger D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6477666/ https://www.ncbi.nlm.nih.gov/pubmed/31105213 http://dx.doi.org/10.3390/biomimetics4010028 |
Ejemplares similares
-
Dynamical Motor Control Learned with Deep Deterministic Policy Gradient
por: Shi, Haibo, et al.
Publicado: (2018) -
Neural Networks Trained via Reinforcement Learning Stabilize Walking of a Three-Dimensional Biped Model With Exoskeleton Applications
por: Liu, Chujun, et al.
Publicado: (2021) -
Network Architecture for Optimizing Deep Deterministic Policy Gradient Algorithms
por: Zhang, Haifei, et al.
Publicado: (2022) -
A parallel heterogeneous policy deep reinforcement learning algorithm for bipedal walking motion design
por: Li, Chunguang, et al.
Publicado: (2023) -
Efficient Path Planning for Mobile Robot Based on Deep Deterministic Policy Gradient
por: Gong, Hui, et al.
Publicado: (2022)