Cargando…
STatistical Inference Relief (STIR) feature selection
MOTIVATION: Relief is a family of machine learning algorithms that uses nearest-neighbors to select features whose association with an outcome may be due to epistasis or statistical interactions with other features in high-dimensional data. Relief-based estimators are non-parametric in the statistic...
Autores principales: | Le, Trang T, Urbanowicz, Ryan J, Moore, Jason H, McKinney, Brett A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6477983/ https://www.ncbi.nlm.nih.gov/pubmed/30239600 http://dx.doi.org/10.1093/bioinformatics/bty788 |
Ejemplares similares
-
Theoretical properties of distance distributions and novel metrics for nearest-neighbor feature selection
por: Dawkins, Bryan A., et al.
Publicado: (2021) -
Transition-transversion encoding and genetic relationship metric in ReliefF feature selection improves pathway enrichment in GWAS
por: Arabnejad, M., et al.
Publicado: (2018) -
ReliefSeq: A Gene-Wise Adaptive-K Nearest-Neighbor Feature Selection Tool for Finding Gene-Gene Interactions and Main Effects in mRNA-Seq Gene Expression Data
por: McKinney, Brett A., et al.
Publicado: (2013) -
Multi-Level Model to Predict Antibody Response to Influenza Vaccine Using Gene Expression Interaction Network Feature Selection
por: Parvandeh, Saeid, et al.
Publicado: (2019) -
Scaling tree-based automated machine learning to biomedical big data with a feature set selector
por: Le, Trang T, et al.
Publicado: (2020)