Cargando…
Identification of key regulatory genes connected to NF-κB family of proteins in visceral adipose tissues using gene expression and weighted protein interaction network
Obesity is connected to the activation of chronic inflammatory pathways in both adipocytes and macrophages located in adipose tissues. The nuclear factor (NF)-κB is a central molecule involved in inflammatory pathways linked to the pathology of different complex metabolic disorders. Investigating th...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6478283/ https://www.ncbi.nlm.nih.gov/pubmed/31013288 http://dx.doi.org/10.1371/journal.pone.0214337 |
_version_ | 1783413144454955008 |
---|---|
author | Sabir, Jamal S. M. El Omri, Abdelfatteh Shaik, Noor A. Banaganapalli, Babajan Al-Shaeri, Majed A. Alkenani, Naser A. Hajrah, Nahid H. Awan, Zuhier A. Zrelli, Houda Elango, Ramu Khan, Muhummadh |
author_facet | Sabir, Jamal S. M. El Omri, Abdelfatteh Shaik, Noor A. Banaganapalli, Babajan Al-Shaeri, Majed A. Alkenani, Naser A. Hajrah, Nahid H. Awan, Zuhier A. Zrelli, Houda Elango, Ramu Khan, Muhummadh |
author_sort | Sabir, Jamal S. M. |
collection | PubMed |
description | Obesity is connected to the activation of chronic inflammatory pathways in both adipocytes and macrophages located in adipose tissues. The nuclear factor (NF)-κB is a central molecule involved in inflammatory pathways linked to the pathology of different complex metabolic disorders. Investigating the gene expression data in the adipose tissue would potentially unravel disease relevant gene interactions. The present study is aimed at creating a signature molecular network and at prioritizing the potential biomarkers interacting with NF-κB family of proteins in obesity using system biology approaches. The dataset GSE88837 associated with obesity was downloaded from Gene Expression Omnibus (GEO) database. Statistical analysis represented the differential expression of a total of 2650 genes in adipose tissues (p = <0.05). Using concepts like correlation, semantic similarity, and theoretical graph parameters we narrowed down genes to a network of 23 genes strongly connected with NF-κB family with higher significance. Functional enrichment analysis revealed 21 of 23 target genes of NF-κB were found to have a critical role in the pathophysiology of obesity. Interestingly, GEM and PPP1R13L were predicted as novel genes which may act as potential target or biomarkers of obesity as they occur with other 21 target genes with known obesity relationship. Our study concludes that NF-κB and prioritized target genes regulate the inflammation in adipose tissues through several molecular signaling pathways like NF-κB, PI3K-Akt, glucocorticoid receptor regulatory network, angiogenesis and cytokine pathways. This integrated system biology approaches can be applied for elucidating functional protein interaction networks of NF-κB protein family in different complex diseases. Our integrative and network-based approach for finding therapeutic targets in genomic data could accelerate the identification of novel drug targets for obesity. |
format | Online Article Text |
id | pubmed-6478283 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-64782832019-05-07 Identification of key regulatory genes connected to NF-κB family of proteins in visceral adipose tissues using gene expression and weighted protein interaction network Sabir, Jamal S. M. El Omri, Abdelfatteh Shaik, Noor A. Banaganapalli, Babajan Al-Shaeri, Majed A. Alkenani, Naser A. Hajrah, Nahid H. Awan, Zuhier A. Zrelli, Houda Elango, Ramu Khan, Muhummadh PLoS One Research Article Obesity is connected to the activation of chronic inflammatory pathways in both adipocytes and macrophages located in adipose tissues. The nuclear factor (NF)-κB is a central molecule involved in inflammatory pathways linked to the pathology of different complex metabolic disorders. Investigating the gene expression data in the adipose tissue would potentially unravel disease relevant gene interactions. The present study is aimed at creating a signature molecular network and at prioritizing the potential biomarkers interacting with NF-κB family of proteins in obesity using system biology approaches. The dataset GSE88837 associated with obesity was downloaded from Gene Expression Omnibus (GEO) database. Statistical analysis represented the differential expression of a total of 2650 genes in adipose tissues (p = <0.05). Using concepts like correlation, semantic similarity, and theoretical graph parameters we narrowed down genes to a network of 23 genes strongly connected with NF-κB family with higher significance. Functional enrichment analysis revealed 21 of 23 target genes of NF-κB were found to have a critical role in the pathophysiology of obesity. Interestingly, GEM and PPP1R13L were predicted as novel genes which may act as potential target or biomarkers of obesity as they occur with other 21 target genes with known obesity relationship. Our study concludes that NF-κB and prioritized target genes regulate the inflammation in adipose tissues through several molecular signaling pathways like NF-κB, PI3K-Akt, glucocorticoid receptor regulatory network, angiogenesis and cytokine pathways. This integrated system biology approaches can be applied for elucidating functional protein interaction networks of NF-κB protein family in different complex diseases. Our integrative and network-based approach for finding therapeutic targets in genomic data could accelerate the identification of novel drug targets for obesity. Public Library of Science 2019-04-23 /pmc/articles/PMC6478283/ /pubmed/31013288 http://dx.doi.org/10.1371/journal.pone.0214337 Text en © 2019 Sabir et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Sabir, Jamal S. M. El Omri, Abdelfatteh Shaik, Noor A. Banaganapalli, Babajan Al-Shaeri, Majed A. Alkenani, Naser A. Hajrah, Nahid H. Awan, Zuhier A. Zrelli, Houda Elango, Ramu Khan, Muhummadh Identification of key regulatory genes connected to NF-κB family of proteins in visceral adipose tissues using gene expression and weighted protein interaction network |
title | Identification of key regulatory genes connected to NF-κB family of proteins in visceral adipose tissues using gene expression and weighted protein interaction network |
title_full | Identification of key regulatory genes connected to NF-κB family of proteins in visceral adipose tissues using gene expression and weighted protein interaction network |
title_fullStr | Identification of key regulatory genes connected to NF-κB family of proteins in visceral adipose tissues using gene expression and weighted protein interaction network |
title_full_unstemmed | Identification of key regulatory genes connected to NF-κB family of proteins in visceral adipose tissues using gene expression and weighted protein interaction network |
title_short | Identification of key regulatory genes connected to NF-κB family of proteins in visceral adipose tissues using gene expression and weighted protein interaction network |
title_sort | identification of key regulatory genes connected to nf-κb family of proteins in visceral adipose tissues using gene expression and weighted protein interaction network |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6478283/ https://www.ncbi.nlm.nih.gov/pubmed/31013288 http://dx.doi.org/10.1371/journal.pone.0214337 |
work_keys_str_mv | AT sabirjamalsm identificationofkeyregulatorygenesconnectedtonfkbfamilyofproteinsinvisceraladiposetissuesusinggeneexpressionandweightedproteininteractionnetwork AT elomriabdelfatteh identificationofkeyregulatorygenesconnectedtonfkbfamilyofproteinsinvisceraladiposetissuesusinggeneexpressionandweightedproteininteractionnetwork AT shaiknoora identificationofkeyregulatorygenesconnectedtonfkbfamilyofproteinsinvisceraladiposetissuesusinggeneexpressionandweightedproteininteractionnetwork AT banaganapallibabajan identificationofkeyregulatorygenesconnectedtonfkbfamilyofproteinsinvisceraladiposetissuesusinggeneexpressionandweightedproteininteractionnetwork AT alshaerimajeda identificationofkeyregulatorygenesconnectedtonfkbfamilyofproteinsinvisceraladiposetissuesusinggeneexpressionandweightedproteininteractionnetwork AT alkenaninasera identificationofkeyregulatorygenesconnectedtonfkbfamilyofproteinsinvisceraladiposetissuesusinggeneexpressionandweightedproteininteractionnetwork AT hajrahnahidh identificationofkeyregulatorygenesconnectedtonfkbfamilyofproteinsinvisceraladiposetissuesusinggeneexpressionandweightedproteininteractionnetwork AT awanzuhiera identificationofkeyregulatorygenesconnectedtonfkbfamilyofproteinsinvisceraladiposetissuesusinggeneexpressionandweightedproteininteractionnetwork AT zrellihouda identificationofkeyregulatorygenesconnectedtonfkbfamilyofproteinsinvisceraladiposetissuesusinggeneexpressionandweightedproteininteractionnetwork AT elangoramu identificationofkeyregulatorygenesconnectedtonfkbfamilyofproteinsinvisceraladiposetissuesusinggeneexpressionandweightedproteininteractionnetwork AT khanmuhummadh identificationofkeyregulatorygenesconnectedtonfkbfamilyofproteinsinvisceraladiposetissuesusinggeneexpressionandweightedproteininteractionnetwork |