Cargando…

Domain-specific expression of meristematic genes is defined by the LITTLE ZIPPER protein DTM in tomato

Shoot meristems, which harbor a small population of stem cells, are responsible for generating new above-ground organs in plants. The proliferation and differentiation of these stem cells is regulated by a genetic pathway involving two key meristematic genes: CLAVATA3 (CLV3) and WUSCHEL (WUS). Howev...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Qian, Li, Rong, Weng, Lin, Sun, Yuan, Li, Meng, Xiao, Han
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6478692/
https://www.ncbi.nlm.nih.gov/pubmed/31044159
http://dx.doi.org/10.1038/s42003-019-0368-8
Descripción
Sumario:Shoot meristems, which harbor a small population of stem cells, are responsible for generating new above-ground organs in plants. The proliferation and differentiation of these stem cells is regulated by a genetic pathway involving two key meristematic genes: CLAVATA3 (CLV3) and WUSCHEL (WUS). However, it is not well understood how CLV3 and WUS expression domains in the shoot meristems are specified and maintained during post-embryogenic development. Here, we show that a tomato mutant with fasciated stems, flowers and fruits, due to impaired stem cell activity, is defective in a LITTLE ZIPPER gene denoted as DEFECTIVE TOMATO MERISTEM (DTM). DTM forms a negative feedback loop with class III homeodomain-leucine zipper (HD-ZIP III) transcription factors to confine CLV3 and WUS expression to specific domains of the shoot meristems. Our findings reveal a new layer of complexity in the regulation of plant stem cell homeostasis.