Cargando…
Degradation of antifungal anthraquinone compounds is a probable physiological role of DyP secreted by Bjerkandera adusta
Alizarin is an anti-fungal compound produced by the plant, Rubia tinctorum. The parasitic fungus Bjerkandera adusta Dec 1 was cultured in potato dextrose (PD) medium with or without alizarin. Alizarin was a good substrate for the dye-decolorizing peroxidase (DyP) from B. adusta Dec 1 and hampered B....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6478788/ https://www.ncbi.nlm.nih.gov/pubmed/31016483 http://dx.doi.org/10.1186/s13568-019-0779-4 |
Sumario: | Alizarin is an anti-fungal compound produced by the plant, Rubia tinctorum. The parasitic fungus Bjerkandera adusta Dec 1 was cultured in potato dextrose (PD) medium with or without alizarin. Alizarin was a good substrate for the dye-decolorizing peroxidase (DyP) from B. adusta Dec 1 and hampered B. adusta growth at the early stage of plate culture. During liquid shaking culture, DyP activity in cultures supplemented with 100 μM alizarin was greater than that in controls cultured without alizarin. In particular, DyP activity per dry cell mass increased approximately 3.5-, 3.1-, and 2.9-fold at 24, 30, and 36 h after inoculation, respectively, compared with control cultures. These data suggest that alizarin stimulates the expression of DyP. Interestingly, alizarin rapidly decomposed at an early stage in culture (24–42 h) in PD medium supplemented with 100 μM alizarin. Thus, alizarin appears to induce DyP expression in B. adusta Dec 1, and this DyP, in turn, rapidly degrades alizarin. Collectively, our findings suggest that the physiological role of DyP is to degrade antifungal compounds produced by plants. |
---|