Cargando…
The Piezo2 ion channel is mechanically activated by low-threshold positive pressure
Recent parallel studies clearly indicated that Merkel cells and the mechanosensitive piezo2 ion channel play critical roles in the light-touch somatosensation. Moreover, piezo2 was suggested to be a light-touch sensing ion channel without a role in pain sensing in mammals. However, biophysical chara...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6478859/ https://www.ncbi.nlm.nih.gov/pubmed/31015490 http://dx.doi.org/10.1038/s41598-019-42492-4 |
Sumario: | Recent parallel studies clearly indicated that Merkel cells and the mechanosensitive piezo2 ion channel play critical roles in the light-touch somatosensation. Moreover, piezo2 was suggested to be a light-touch sensing ion channel without a role in pain sensing in mammals. However, biophysical characteristics of piezo2, such as single channel conductance and sensitivities to various mechanical stimuli, are unclear, hampering a precise understanding of its role in touch sensation. Here, we describe the biophysical properties of piezo2 in human Merkel cell carcinoma (MCC)-13 cells; piezo2 is a low-threshold, positive pressure-specific, curvature-sensitive, mechanically activated cation channel with a single channel conductance of ~28.6 pS. Application of step indentations under the whole-cell mode of the patch-clamp technique, and positive pressures ≥5 mmHg under the cell-attached mode, activated piezo2 currents in MCC-13 and human embryonic kidney 293 T cells where piezo2 was overexpressed. By contrast, application of a negative pressure failed to activate piezo2 in these cells, whereas both positive and negative pressure activated piezo1 in a similar manner. Our results are the first to demonstrate single channel recordings of piezo2. We anticipate that our findings will be a starting point for a more sophisticated understanding of piezo2 roles in light-touch sensation. |
---|