Cargando…

Novel DNA Biosensor for Direct Determination of Carrageenan

A novel disposable electrochemical biosensor based on immobilized calf thymus double-stranded DNA (dsDNA) on the carbon-based screen-printed electrode (SPE) is developed for rapid biorecognition of carrageenan by using methylene blue (MB) redox indicator. The biosensor protocol for the detection of...

Descripción completa

Detalles Bibliográficos
Autores principales: Hassan, Riyadh Abdulmalek, Heng, Lee Yook, Tan, Ling Ling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6478878/
https://www.ncbi.nlm.nih.gov/pubmed/31015498
http://dx.doi.org/10.1038/s41598-019-42757-y
Descripción
Sumario:A novel disposable electrochemical biosensor based on immobilized calf thymus double-stranded DNA (dsDNA) on the carbon-based screen-printed electrode (SPE) is developed for rapid biorecognition of carrageenan by using methylene blue (MB) redox indicator. The biosensor protocol for the detection of carrageenan is based on the concept of competitive binding of positively charged MB to the negatively charged dsDNA and carrageenan. The decrement in the MB cathodic peak current (i(pc)) signal as a result of the released MB from the immobilized dsDNA, and attracted to the carrageenan can be monitored via differential pulse voltammetry (DPV). The biosensor showed high sensitivity and selectivity to carrageenan at low concentration without interference from other polyanions such as alginate, gum arabic and starch. Calibration of the biosensor with carrageenan exhibited an excellent linear dependence from 1–10 mg L(−1) (R(2) = 0.98) with a detection limit of 0.08 mg L(−1). The DNA-based carrageenan biosensor showed satisfactory reproducibility with 5.6–6.9% (n = 3) relative standard deviations (RSD), and possessing several advantages such as simplicity, fast and direct application to real sample analysis without any prior extensive sample treatments, particularly for seaweeds and food analyses.