Cargando…

Symbiotic cardiac pacemaker

Self-powered implantable medical electronic devices that harvest biomechanical energy from cardiac motion, respiratory movement and blood flow are part of a paradigm shift that is on the horizon. Here, we demonstrate a fully implanted symbiotic pacemaker based on an implantable triboelectric nanogen...

Descripción completa

Detalles Bibliográficos
Autores principales: Ouyang, Han, Liu, Zhuo, Li, Ning, Shi, Bojing, Zou, Yang, Xie, Feng, Ma, Ye, Li, Zhe, Li, Hu, Zheng, Qiang, Qu, Xuecheng, Fan, Yubo, Wang, Zhong Lin, Zhang, Hao, Li, Zhou
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6478903/
https://www.ncbi.nlm.nih.gov/pubmed/31015519
http://dx.doi.org/10.1038/s41467-019-09851-1
_version_ 1783413239788339200
author Ouyang, Han
Liu, Zhuo
Li, Ning
Shi, Bojing
Zou, Yang
Xie, Feng
Ma, Ye
Li, Zhe
Li, Hu
Zheng, Qiang
Qu, Xuecheng
Fan, Yubo
Wang, Zhong Lin
Zhang, Hao
Li, Zhou
author_facet Ouyang, Han
Liu, Zhuo
Li, Ning
Shi, Bojing
Zou, Yang
Xie, Feng
Ma, Ye
Li, Zhe
Li, Hu
Zheng, Qiang
Qu, Xuecheng
Fan, Yubo
Wang, Zhong Lin
Zhang, Hao
Li, Zhou
author_sort Ouyang, Han
collection PubMed
description Self-powered implantable medical electronic devices that harvest biomechanical energy from cardiac motion, respiratory movement and blood flow are part of a paradigm shift that is on the horizon. Here, we demonstrate a fully implanted symbiotic pacemaker based on an implantable triboelectric nanogenerator, which achieves energy harvesting and storage as well as cardiac pacing on a large-animal scale. The symbiotic pacemaker successfully corrects sinus arrhythmia and prevents deterioration. The open circuit voltage of an implantable triboelectric nanogenerator reaches up to 65.2 V. The energy harvested from each cardiac motion cycle is 0.495 μJ, which is higher than the required endocardial pacing threshold energy (0.377 μJ). Implantable triboelectric nanogenerators for implantable medical devices offer advantages of excellent output performance, high power density, and good durability, and are expected to find application in fields of treatment and diagnosis as in vivo symbiotic bioelectronics.
format Online
Article
Text
id pubmed-6478903
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-64789032019-04-25 Symbiotic cardiac pacemaker Ouyang, Han Liu, Zhuo Li, Ning Shi, Bojing Zou, Yang Xie, Feng Ma, Ye Li, Zhe Li, Hu Zheng, Qiang Qu, Xuecheng Fan, Yubo Wang, Zhong Lin Zhang, Hao Li, Zhou Nat Commun Article Self-powered implantable medical electronic devices that harvest biomechanical energy from cardiac motion, respiratory movement and blood flow are part of a paradigm shift that is on the horizon. Here, we demonstrate a fully implanted symbiotic pacemaker based on an implantable triboelectric nanogenerator, which achieves energy harvesting and storage as well as cardiac pacing on a large-animal scale. The symbiotic pacemaker successfully corrects sinus arrhythmia and prevents deterioration. The open circuit voltage of an implantable triboelectric nanogenerator reaches up to 65.2 V. The energy harvested from each cardiac motion cycle is 0.495 μJ, which is higher than the required endocardial pacing threshold energy (0.377 μJ). Implantable triboelectric nanogenerators for implantable medical devices offer advantages of excellent output performance, high power density, and good durability, and are expected to find application in fields of treatment and diagnosis as in vivo symbiotic bioelectronics. Nature Publishing Group UK 2019-04-23 /pmc/articles/PMC6478903/ /pubmed/31015519 http://dx.doi.org/10.1038/s41467-019-09851-1 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Ouyang, Han
Liu, Zhuo
Li, Ning
Shi, Bojing
Zou, Yang
Xie, Feng
Ma, Ye
Li, Zhe
Li, Hu
Zheng, Qiang
Qu, Xuecheng
Fan, Yubo
Wang, Zhong Lin
Zhang, Hao
Li, Zhou
Symbiotic cardiac pacemaker
title Symbiotic cardiac pacemaker
title_full Symbiotic cardiac pacemaker
title_fullStr Symbiotic cardiac pacemaker
title_full_unstemmed Symbiotic cardiac pacemaker
title_short Symbiotic cardiac pacemaker
title_sort symbiotic cardiac pacemaker
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6478903/
https://www.ncbi.nlm.nih.gov/pubmed/31015519
http://dx.doi.org/10.1038/s41467-019-09851-1
work_keys_str_mv AT ouyanghan symbioticcardiacpacemaker
AT liuzhuo symbioticcardiacpacemaker
AT lining symbioticcardiacpacemaker
AT shibojing symbioticcardiacpacemaker
AT zouyang symbioticcardiacpacemaker
AT xiefeng symbioticcardiacpacemaker
AT maye symbioticcardiacpacemaker
AT lizhe symbioticcardiacpacemaker
AT lihu symbioticcardiacpacemaker
AT zhengqiang symbioticcardiacpacemaker
AT quxuecheng symbioticcardiacpacemaker
AT fanyubo symbioticcardiacpacemaker
AT wangzhonglin symbioticcardiacpacemaker
AT zhanghao symbioticcardiacpacemaker
AT lizhou symbioticcardiacpacemaker