Cargando…
Multi-temporal Land Use Land Cover (LULC) change analysis of a dry semi-arid river basin in western India following a robust multi-sensor satellite image calibration strategy
Multi-temporal and multi-sensor satellite data calibration is an inherent problem in remote sensing-based applications. If multiple satellite scenes cover the study area, it is difficult to compare and process the images for change detection and long-term trend analysis of the same day and/or season...
Autores principales: | Roy, Anjan, Inamdar, Arun B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479096/ https://www.ncbi.nlm.nih.gov/pubmed/31065600 http://dx.doi.org/10.1016/j.heliyon.2019.e01478 |
Ejemplares similares
-
Sen-2 LULC: Land use land cover dataset for deep learning approaches
por: Sawant, Suraj, et al.
Publicado: (2023) -
The impact of land use and land cover (LULC) dynamics on soil erosion and sediment yield in Ethiopia
por: Kidane, Moges, et al.
Publicado: (2019) -
Land use and land cover (LULC) performance modeling using machine learning algorithms: a case study of the city of Melbourne, Australia
por: Aryal, Jagannath, et al.
Publicado: (2023) -
Identifying hotspots in land use land cover change and the drivers in a semi-arid region of India
por: Duraisamy, Vijayasekaran, et al.
Publicado: (2018) -
Mapping and assessment of degraded land in the Heihe River Basin, arid northwestern China
por: Qi, Shanzhong, et al.
Publicado: (2007)