Cargando…

Modelling Highly Biodiverse Areas in Brazil

Traditional conservation techniques for mapping highly biodiverse areas assume there to be satisfactory knowledge about the geographic distribution of biodiversity. There are, however, large gaps in biological sampling and hence knowledge shortfalls. This problem is even more pronounced in the tropi...

Descripción completa

Detalles Bibliográficos
Autores principales: Oliveira, Ubirajara, Soares-Filho, Britaldo Silveira, Santos, Adalberto J., Paglia, Adriano Pereira, Brescovit, Antonio D., de Carvalho, Claudio J. B., Silva, Daniel Paiva, Rezende, Daniella T., Leite, Felipe Sá Fortes, Batista, João Aguiar Nogueira, Barbosa, João Paulo Peixoto Pena, Stehmann, João Renato, Ascher, John S., Vasconcelos, Marcelo F., Marco, Paulo De, Löwenberg-Neto, Peter, Ferro, Viviane Gianluppi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479156/
https://www.ncbi.nlm.nih.gov/pubmed/31015555
http://dx.doi.org/10.1038/s41598-019-42881-9
_version_ 1783413289344040960
author Oliveira, Ubirajara
Soares-Filho, Britaldo Silveira
Santos, Adalberto J.
Paglia, Adriano Pereira
Brescovit, Antonio D.
de Carvalho, Claudio J. B.
Silva, Daniel Paiva
Rezende, Daniella T.
Leite, Felipe Sá Fortes
Batista, João Aguiar Nogueira
Barbosa, João Paulo Peixoto Pena
Stehmann, João Renato
Ascher, John S.
Vasconcelos, Marcelo F.
Marco, Paulo De
Löwenberg-Neto, Peter
Ferro, Viviane Gianluppi
author_facet Oliveira, Ubirajara
Soares-Filho, Britaldo Silveira
Santos, Adalberto J.
Paglia, Adriano Pereira
Brescovit, Antonio D.
de Carvalho, Claudio J. B.
Silva, Daniel Paiva
Rezende, Daniella T.
Leite, Felipe Sá Fortes
Batista, João Aguiar Nogueira
Barbosa, João Paulo Peixoto Pena
Stehmann, João Renato
Ascher, John S.
Vasconcelos, Marcelo F.
Marco, Paulo De
Löwenberg-Neto, Peter
Ferro, Viviane Gianluppi
author_sort Oliveira, Ubirajara
collection PubMed
description Traditional conservation techniques for mapping highly biodiverse areas assume there to be satisfactory knowledge about the geographic distribution of biodiversity. There are, however, large gaps in biological sampling and hence knowledge shortfalls. This problem is even more pronounced in the tropics. Indeed, the use of only a few taxonomic groups or environmental surrogates for modelling biodiversity is not viable in mega-diverse countries, such as Brazil. To overcome these limitations, we developed a comprehensive spatial model that includes phylogenetic information and other several biodiversity dimensions aimed at mapping areas with high relevance for biodiversity conservation. Our model applies a genetic algorithm tool for identifying the smallest possible region within a unique biota that contains the most number of species and phylogenetic diversity, as well as the highest endemicity and phylogenetic endemism. The model successfully pinpoints small highly biodiverse areas alongside regions with knowledge shortfalls where further sampling should be conducted. Our results suggest that conservation strategies should consider several taxonomic groups, the multiple dimensions of biodiversity, and associated sampling uncertainties.
format Online
Article
Text
id pubmed-6479156
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-64791562019-05-03 Modelling Highly Biodiverse Areas in Brazil Oliveira, Ubirajara Soares-Filho, Britaldo Silveira Santos, Adalberto J. Paglia, Adriano Pereira Brescovit, Antonio D. de Carvalho, Claudio J. B. Silva, Daniel Paiva Rezende, Daniella T. Leite, Felipe Sá Fortes Batista, João Aguiar Nogueira Barbosa, João Paulo Peixoto Pena Stehmann, João Renato Ascher, John S. Vasconcelos, Marcelo F. Marco, Paulo De Löwenberg-Neto, Peter Ferro, Viviane Gianluppi Sci Rep Article Traditional conservation techniques for mapping highly biodiverse areas assume there to be satisfactory knowledge about the geographic distribution of biodiversity. There are, however, large gaps in biological sampling and hence knowledge shortfalls. This problem is even more pronounced in the tropics. Indeed, the use of only a few taxonomic groups or environmental surrogates for modelling biodiversity is not viable in mega-diverse countries, such as Brazil. To overcome these limitations, we developed a comprehensive spatial model that includes phylogenetic information and other several biodiversity dimensions aimed at mapping areas with high relevance for biodiversity conservation. Our model applies a genetic algorithm tool for identifying the smallest possible region within a unique biota that contains the most number of species and phylogenetic diversity, as well as the highest endemicity and phylogenetic endemism. The model successfully pinpoints small highly biodiverse areas alongside regions with knowledge shortfalls where further sampling should be conducted. Our results suggest that conservation strategies should consider several taxonomic groups, the multiple dimensions of biodiversity, and associated sampling uncertainties. Nature Publishing Group UK 2019-04-23 /pmc/articles/PMC6479156/ /pubmed/31015555 http://dx.doi.org/10.1038/s41598-019-42881-9 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Oliveira, Ubirajara
Soares-Filho, Britaldo Silveira
Santos, Adalberto J.
Paglia, Adriano Pereira
Brescovit, Antonio D.
de Carvalho, Claudio J. B.
Silva, Daniel Paiva
Rezende, Daniella T.
Leite, Felipe Sá Fortes
Batista, João Aguiar Nogueira
Barbosa, João Paulo Peixoto Pena
Stehmann, João Renato
Ascher, John S.
Vasconcelos, Marcelo F.
Marco, Paulo De
Löwenberg-Neto, Peter
Ferro, Viviane Gianluppi
Modelling Highly Biodiverse Areas in Brazil
title Modelling Highly Biodiverse Areas in Brazil
title_full Modelling Highly Biodiverse Areas in Brazil
title_fullStr Modelling Highly Biodiverse Areas in Brazil
title_full_unstemmed Modelling Highly Biodiverse Areas in Brazil
title_short Modelling Highly Biodiverse Areas in Brazil
title_sort modelling highly biodiverse areas in brazil
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479156/
https://www.ncbi.nlm.nih.gov/pubmed/31015555
http://dx.doi.org/10.1038/s41598-019-42881-9
work_keys_str_mv AT oliveiraubirajara modellinghighlybiodiverseareasinbrazil
AT soaresfilhobritaldosilveira modellinghighlybiodiverseareasinbrazil
AT santosadalbertoj modellinghighlybiodiverseareasinbrazil
AT pagliaadrianopereira modellinghighlybiodiverseareasinbrazil
AT brescovitantoniod modellinghighlybiodiverseareasinbrazil
AT decarvalhoclaudiojb modellinghighlybiodiverseareasinbrazil
AT silvadanielpaiva modellinghighlybiodiverseareasinbrazil
AT rezendedaniellat modellinghighlybiodiverseareasinbrazil
AT leitefelipesafortes modellinghighlybiodiverseareasinbrazil
AT batistajoaoaguiarnogueira modellinghighlybiodiverseareasinbrazil
AT barbosajoaopaulopeixotopena modellinghighlybiodiverseareasinbrazil
AT stehmannjoaorenato modellinghighlybiodiverseareasinbrazil
AT ascherjohns modellinghighlybiodiverseareasinbrazil
AT vasconcelosmarcelof modellinghighlybiodiverseareasinbrazil
AT marcopaulode modellinghighlybiodiverseareasinbrazil
AT lowenbergnetopeter modellinghighlybiodiverseareasinbrazil
AT ferrovivianegianluppi modellinghighlybiodiverseareasinbrazil