Cargando…
Improved Correlation Filter Tracking with Enhanced Features and Adaptive Kalman Filter
In the field of visual tracking, discriminative correlation filter (DCF)-based trackers have made remarkable achievements with their high computational efficiency. The crucial challenge that still remains is how to construct qualified samples without boundary effects and redetect occluded targets. I...
Autores principales: | Yang, Hao, Huang, Yingqing, Xie, Zhihong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479297/ https://www.ncbi.nlm.nih.gov/pubmed/30987414 http://dx.doi.org/10.3390/s19071625 |
Ejemplares similares
-
Learning Local–Global Multiple Correlation Filters for Robust Visual Tracking with Kalman Filter Redetection
por: Zhang, Jianming, et al.
Publicado: (2021) -
Kalman filtering techniques for radar tracking
por: Ramachandra, K V
Publicado: (2000) -
Tracking and Kalman filtering made easy
por: Brookner, Eli
Publicado: (1998) -
Performance Evaluation of Adaptive Tracking Techniques with Direct-State Kalman Filter †
por: Cortés, Iñigo, et al.
Publicado: (2022) -
Achieving Adaptive Visual Multi-Object Tracking with Unscented Kalman Filter
por: Zhang, Guowei, et al.
Publicado: (2022)