Cargando…
Automatic Calibration of an Industrial RGB-D Camera Network Using Retroreflective Fiducial Markers
This paper describes a non-invasive, automatic, and robust method for calibrating a scalable RGB-D sensor network based on retroreflective ArUco markers and the iterative closest point (ICP) scheme. We demonstrate the system by calibrating a sensor network comprised of six sensor nodes positioned in...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479303/ https://www.ncbi.nlm.nih.gov/pubmed/30935144 http://dx.doi.org/10.3390/s19071561 |
_version_ | 1783413314438561792 |
---|---|
author | Aalerud, Atle Dybedal, Joacim Hovland, Geir |
author_facet | Aalerud, Atle Dybedal, Joacim Hovland, Geir |
author_sort | Aalerud, Atle |
collection | PubMed |
description | This paper describes a non-invasive, automatic, and robust method for calibrating a scalable RGB-D sensor network based on retroreflective ArUco markers and the iterative closest point (ICP) scheme. We demonstrate the system by calibrating a sensor network comprised of six sensor nodes positioned in a relatively large industrial robot cell with an approximate size of [Formula: see text] [Formula: see text]. Here, the automatic calibration achieved an average Euclidean error of 3 [Formula: see text] [Formula: see text] at distances up to [Formula: see text] [Formula: see text]. To achieve robustness, we apply several innovative techniques: Firstly, we mitigate the ambiguity problem that occurs when detecting a marker at long range or low resolution by comparing the camera projection with depth data. Secondly, we use retroreflective fiducial markers in the RGB-D calibration for improved accuracy and detectability. Finally, the repeating ICP refinement uses an exact region of interest such that we employ the precise depth measurements of the retroreflective surfaces only. The complete calibration software and a recorded dataset are publically available and open source. |
format | Online Article Text |
id | pubmed-6479303 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64793032019-04-29 Automatic Calibration of an Industrial RGB-D Camera Network Using Retroreflective Fiducial Markers Aalerud, Atle Dybedal, Joacim Hovland, Geir Sensors (Basel) Article This paper describes a non-invasive, automatic, and robust method for calibrating a scalable RGB-D sensor network based on retroreflective ArUco markers and the iterative closest point (ICP) scheme. We demonstrate the system by calibrating a sensor network comprised of six sensor nodes positioned in a relatively large industrial robot cell with an approximate size of [Formula: see text] [Formula: see text]. Here, the automatic calibration achieved an average Euclidean error of 3 [Formula: see text] [Formula: see text] at distances up to [Formula: see text] [Formula: see text]. To achieve robustness, we apply several innovative techniques: Firstly, we mitigate the ambiguity problem that occurs when detecting a marker at long range or low resolution by comparing the camera projection with depth data. Secondly, we use retroreflective fiducial markers in the RGB-D calibration for improved accuracy and detectability. Finally, the repeating ICP refinement uses an exact region of interest such that we employ the precise depth measurements of the retroreflective surfaces only. The complete calibration software and a recorded dataset are publically available and open source. MDPI 2019-03-31 /pmc/articles/PMC6479303/ /pubmed/30935144 http://dx.doi.org/10.3390/s19071561 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Aalerud, Atle Dybedal, Joacim Hovland, Geir Automatic Calibration of an Industrial RGB-D Camera Network Using Retroreflective Fiducial Markers |
title | Automatic Calibration of an Industrial RGB-D Camera Network Using Retroreflective Fiducial Markers |
title_full | Automatic Calibration of an Industrial RGB-D Camera Network Using Retroreflective Fiducial Markers |
title_fullStr | Automatic Calibration of an Industrial RGB-D Camera Network Using Retroreflective Fiducial Markers |
title_full_unstemmed | Automatic Calibration of an Industrial RGB-D Camera Network Using Retroreflective Fiducial Markers |
title_short | Automatic Calibration of an Industrial RGB-D Camera Network Using Retroreflective Fiducial Markers |
title_sort | automatic calibration of an industrial rgb-d camera network using retroreflective fiducial markers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479303/ https://www.ncbi.nlm.nih.gov/pubmed/30935144 http://dx.doi.org/10.3390/s19071561 |
work_keys_str_mv | AT aalerudatle automaticcalibrationofanindustrialrgbdcameranetworkusingretroreflectivefiducialmarkers AT dybedaljoacim automaticcalibrationofanindustrialrgbdcameranetworkusingretroreflectivefiducialmarkers AT hovlandgeir automaticcalibrationofanindustrialrgbdcameranetworkusingretroreflectivefiducialmarkers |