Cargando…

Automatic Calibration of an Industrial RGB-D Camera Network Using Retroreflective Fiducial Markers

This paper describes a non-invasive, automatic, and robust method for calibrating a scalable RGB-D sensor network based on retroreflective ArUco markers and the iterative closest point (ICP) scheme. We demonstrate the system by calibrating a sensor network comprised of six sensor nodes positioned in...

Descripción completa

Detalles Bibliográficos
Autores principales: Aalerud, Atle, Dybedal, Joacim, Hovland, Geir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479303/
https://www.ncbi.nlm.nih.gov/pubmed/30935144
http://dx.doi.org/10.3390/s19071561
_version_ 1783413314438561792
author Aalerud, Atle
Dybedal, Joacim
Hovland, Geir
author_facet Aalerud, Atle
Dybedal, Joacim
Hovland, Geir
author_sort Aalerud, Atle
collection PubMed
description This paper describes a non-invasive, automatic, and robust method for calibrating a scalable RGB-D sensor network based on retroreflective ArUco markers and the iterative closest point (ICP) scheme. We demonstrate the system by calibrating a sensor network comprised of six sensor nodes positioned in a relatively large industrial robot cell with an approximate size of [Formula: see text] [Formula: see text]. Here, the automatic calibration achieved an average Euclidean error of 3 [Formula: see text] [Formula: see text] at distances up to [Formula: see text] [Formula: see text]. To achieve robustness, we apply several innovative techniques: Firstly, we mitigate the ambiguity problem that occurs when detecting a marker at long range or low resolution by comparing the camera projection with depth data. Secondly, we use retroreflective fiducial markers in the RGB-D calibration for improved accuracy and detectability. Finally, the repeating ICP refinement uses an exact region of interest such that we employ the precise depth measurements of the retroreflective surfaces only. The complete calibration software and a recorded dataset are publically available and open source.
format Online
Article
Text
id pubmed-6479303
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-64793032019-04-29 Automatic Calibration of an Industrial RGB-D Camera Network Using Retroreflective Fiducial Markers Aalerud, Atle Dybedal, Joacim Hovland, Geir Sensors (Basel) Article This paper describes a non-invasive, automatic, and robust method for calibrating a scalable RGB-D sensor network based on retroreflective ArUco markers and the iterative closest point (ICP) scheme. We demonstrate the system by calibrating a sensor network comprised of six sensor nodes positioned in a relatively large industrial robot cell with an approximate size of [Formula: see text] [Formula: see text]. Here, the automatic calibration achieved an average Euclidean error of 3 [Formula: see text] [Formula: see text] at distances up to [Formula: see text] [Formula: see text]. To achieve robustness, we apply several innovative techniques: Firstly, we mitigate the ambiguity problem that occurs when detecting a marker at long range or low resolution by comparing the camera projection with depth data. Secondly, we use retroreflective fiducial markers in the RGB-D calibration for improved accuracy and detectability. Finally, the repeating ICP refinement uses an exact region of interest such that we employ the precise depth measurements of the retroreflective surfaces only. The complete calibration software and a recorded dataset are publically available and open source. MDPI 2019-03-31 /pmc/articles/PMC6479303/ /pubmed/30935144 http://dx.doi.org/10.3390/s19071561 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Aalerud, Atle
Dybedal, Joacim
Hovland, Geir
Automatic Calibration of an Industrial RGB-D Camera Network Using Retroreflective Fiducial Markers
title Automatic Calibration of an Industrial RGB-D Camera Network Using Retroreflective Fiducial Markers
title_full Automatic Calibration of an Industrial RGB-D Camera Network Using Retroreflective Fiducial Markers
title_fullStr Automatic Calibration of an Industrial RGB-D Camera Network Using Retroreflective Fiducial Markers
title_full_unstemmed Automatic Calibration of an Industrial RGB-D Camera Network Using Retroreflective Fiducial Markers
title_short Automatic Calibration of an Industrial RGB-D Camera Network Using Retroreflective Fiducial Markers
title_sort automatic calibration of an industrial rgb-d camera network using retroreflective fiducial markers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479303/
https://www.ncbi.nlm.nih.gov/pubmed/30935144
http://dx.doi.org/10.3390/s19071561
work_keys_str_mv AT aalerudatle automaticcalibrationofanindustrialrgbdcameranetworkusingretroreflectivefiducialmarkers
AT dybedaljoacim automaticcalibrationofanindustrialrgbdcameranetworkusingretroreflectivefiducialmarkers
AT hovlandgeir automaticcalibrationofanindustrialrgbdcameranetworkusingretroreflectivefiducialmarkers