Cargando…
Technology to Produce High-Purity Anhydrous Rubidium Perrhenate on an Industrial Scale
Technology used to produce high purity anhydrous rubidium perrhenate on an industrial scale from high purity perrhenic acid and rubidium nitrate by the ion-exchange method is described in this paper. This material is dedicated to catalyst preparation, therefore, strict purity requirements have to be...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479311/ https://www.ncbi.nlm.nih.gov/pubmed/30959923 http://dx.doi.org/10.3390/ma12071130 |
Sumario: | Technology used to produce high purity anhydrous rubidium perrhenate on an industrial scale from high purity perrhenic acid and rubidium nitrate by the ion-exchange method is described in this paper. This material is dedicated to catalyst preparation, therefore, strict purity requirements have to be fulfilled. These are satisfied by combining rubidium ion sorption on an ion exchange column and the subsequent elution of the high purity perrhenic acid solution, followed by crystallization, evaporation, purification, and drying. In the current study, rubidium and rhenium contents were found to be 22.5 wt.% and 55.4 wt.%, respectively, while contaminations were as follows: <2 ppm As, <2 ppm Bi, <5 ppm Ca, <5 ppm Cu, <3 ppm Fe, <10 ppm K, <3 ppm Mg, <5 ppm Mo, <2 ppm Na, <5 ppm Pb, and <3 ppm Zn. |
---|