Cargando…

Exosome-Mediated Delivery of Inducible miR-423-5p Enhances Resistance of MRC-5 Cells to Rabies Virus Infection

The human diploid cell line Medical Research Council -5 (MRC-5) is commonly utilized for vaccine development. Although a rabies vaccine developed in cultured MRC-5 cells exists, the poor susceptibility of MRC-5 cells to the rabies virus (RABV) infection limits the potential yield of this vaccine. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jingyu, Teng, Yawei, Zhao, Guanshu, Li, Fang, Hou, Ali, Sun, Bo, Kong, Wei, Gao, Feng, Cai, Linjun, Jiang, Chunlai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479321/
https://www.ncbi.nlm.nih.gov/pubmed/30934732
http://dx.doi.org/10.3390/ijms20071537
Descripción
Sumario:The human diploid cell line Medical Research Council -5 (MRC-5) is commonly utilized for vaccine development. Although a rabies vaccine developed in cultured MRC-5 cells exists, the poor susceptibility of MRC-5 cells to the rabies virus (RABV) infection limits the potential yield of this vaccine. The underlying mechanism of MRC-5 cell resistance to RABV infection remains unknown. In this study, we demonstrate that viral infection increased exosomal release from MRC-5 cells; conversely, blocking exosome release promoted RABV infection in MRC-5 cells. Additionally, RABV infection up-regulated microRNA (miR)-423-5p expression in exosomes, resulting in feedback inhibition of RABV replication by abrogating the inhibitory effect of suppressor of cytokine signaling 3 (SOCS3) on type I interferon (IFN) signaling. Furthermore, intercellular delivery of miR-423-5p by exosomes inhibited RABV replication in MRC-5 cells. We also show that RABV infection increased IFN-β production in MRC-5 cells and that blocking the type I IFN receptor promoted RABV infection. In conclusion, MRC-5 cells were protected from RABV infection by the intercellular delivery of exosomal miR-423-5p and the up-regulation of IFN-β. These findings reveal novel antiviral mechanisms in MRC-5 cells against RABV infection. miR-423-5p, exosomes, and IFN signaling pathways may therefore be potential targets for improving MRC-5 cell-based rabies vaccine production.