Cargando…
A Feature Extraction Method Based on Differential Entropy and Linear Discriminant Analysis for Emotion Recognition
Feature extraction of electroencephalography (EEG) signals plays a significant role in the wearable computing field. Due to the practical applications of EEG emotion calculation, researchers often use edge calculation to reduce data transmission times, however, as EEG involves a large amount of data...
Autores principales: | Chen, Dong-Wei, Miao, Rui, Yang, Wei-Qi, Liang, Yong, Chen, Hao-Heng, Huang, Lan, Deng, Chun-Jian, Han, Na |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479375/ https://www.ncbi.nlm.nih.gov/pubmed/30959760 http://dx.doi.org/10.3390/s19071631 |
Ejemplares similares
-
EEG-based human emotion recognition using entropy as a feature extraction measure
por: Patel, Pragati, et al.
Publicado: (2021) -
Musical Emotions Recognition Using Entropy Features and Channel Optimization Based on EEG
por: Xie, Zun, et al.
Publicado: (2022) -
Cross-Subject Emotion Recognition Using Fused Entropy Features of EEG
por: Zuo, Xin, et al.
Publicado: (2022) -
Feature Extraction of Surface Electromyography Using Wavelet Weighted Permutation Entropy for Hand Movement Recognition
por: Liu, Xiaoyun, et al.
Publicado: (2020) -
EEG Feature Extraction and Data Augmentation in Emotion Recognition
por: Kalashami, Mahsa Pourhosein, et al.
Publicado: (2022)