Cargando…
Deep Convolutional Neural Network for Flood Extent Mapping Using Unmanned Aerial Vehicles Data
Flooding is one of the leading threats of natural disasters to human life and property, especially in densely populated urban areas. Rapid and precise extraction of the flooded areas is key to supporting emergency-response planning and providing damage assessment in both spatial and temporal measure...
Autores principales: | Gebrehiwot, Asmamaw, Hashemi-Beni, Leila, Thompson, Gary, Kordjamshidi, Parisa, Langan, Thomas E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479537/ https://www.ncbi.nlm.nih.gov/pubmed/30934695 http://dx.doi.org/10.3390/s19071486 |
Ejemplares similares
-
A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery
por: Huang, Huasheng, et al.
Publicado: (2018) -
Challenges and Opportunities for UAV-Based Digital Elevation Model Generation for Flood-Risk Management: A Case of Princeville, North Carolina
por: Hashemi-Beni, Leila, et al.
Publicado: (2018) -
Handbook of unmanned aerial vehicles
por: Valavanis, Kimon, et al.
Publicado: (2015) -
Guidance of Unmanned Aerial Vehicles
por: Yanushevsky, Rafael
Publicado: (2011) -
Automated mapping of Portulacaria afra canopies for restoration monitoring with convolutional neural networks and heterogeneous unmanned aerial vehicle imagery
por: Galuszynski, Nicholas C., et al.
Publicado: (2022)