Cargando…
Reducing False Arrhythmia Alarms Using Different Methods of Probability and Class Assignment in Random Forest Learning Methods
The literature indicates that 90% of clinical alarms in intensive care units might be false. This high percentage negatively impacts both patients and clinical staff. In patients, false alarms significantly increase stress levels, which is especially dangerous for cardiac patients. In clinical staff...
Autores principales: | Gajowniczek, Krzysztof, Grzegorczyk, Iga, Ząbkowski, Tomasz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479538/ https://www.ncbi.nlm.nih.gov/pubmed/30986930 http://dx.doi.org/10.3390/s19071588 |
Ejemplares similares
-
Weighted Random Forests to Improve Arrhythmia Classification
por: Gajowniczek, Krzysztof, et al.
Publicado: (2020) -
Electricity forecasting on the individual household level enhanced based on activity patterns
por: Gajowniczek, Krzysztof, et al.
Publicado: (2017) -
False arrhythmia alarms can be reduced by algorithm improvements while the magnitude of the reduction is affected by alarm settings
por: Kaski, M, et al.
Publicado: (2015) -
Simulation Study on the Application of the Generalized Entropy Concept in Artificial Neural Networks
por: Gajowniczek, Krzysztof, et al.
Publicado: (2018) -
Whole Time Series Data Streams Clustering: Dynamic Profiling of the Electricity Consumption
por: Gajowniczek, Krzysztof, et al.
Publicado: (2020)