Cargando…
Efficient Classification of Motor Imagery Electroencephalography Signals Using Deep Learning Methods
Single-trial motor imagery classification is a crucial aspect of brain–computer applications. Therefore, it is necessary to extract and discriminate signal features involving motor imagery movements. Riemannian geometry-based feature extraction methods are effective when designing these types of mot...
Autores principales: | Majidov, Ikhtiyor, Whangbo, Taegkeun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479542/ https://www.ncbi.nlm.nih.gov/pubmed/30978978 http://dx.doi.org/10.3390/s19071736 |
Ejemplares similares
-
Classification of Motor Imagery Electroencephalography Signals Based on Image Processing Method
por: Chen, Zhongye, et al.
Publicado: (2021) -
Electroencephalography-Based Brain–Computer Interface Motor Imagery Classification
por: Mohammadi, Ehsan, et al.
Publicado: (2021) -
Electroencephalography Signal Analysis for Human Activities Classification: A Solution Based on Machine Learning and Motor Imagery
por: de Brito Guerra, Tarciana C., et al.
Publicado: (2023) -
Classification of Four-Class Motor Imagery Employing Single-Channel Electroencephalography
por: Ge, Sheng, et al.
Publicado: (2014) -
Enhancing the Super-Resolution of Medical Images: Introducing the Deep Residual Feature Distillation Channel Attention Network for Optimized Performance and Efficiency
por: Umirzakova, Sabina, et al.
Publicado: (2023)