Cargando…

High Performance Bacteria Anchored by Nanoclay to Boost Straw Degradation

Generally, crop straw degrades slowly in soil, which is unfavorable for tillage and next crop growth. Thus, it is important to develop a promising technology to boost degradation of straw. Herein, a nanobiosystem has been developed by loading bacterial mixture in nanostructured attapulgite (ATP) and...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Minghao, Tang, Caiguo, Chen, Xue, Huang, Shengwei, Zhao, Weiwei, Cai, Dongqing, Wu, Zhengyan, Wu, Lifang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479857/
https://www.ncbi.nlm.nih.gov/pubmed/30970546
http://dx.doi.org/10.3390/ma12071148
Descripción
Sumario:Generally, crop straw degrades slowly in soil, which is unfavorable for tillage and next crop growth. Thus, it is important to develop a promising technology to boost degradation of straw. Herein, a nanobiosystem has been developed by loading bacterial mixture in nanostructured attapulgite (ATP) and using it as a straw returning agent (SRA). Therein, ATP could effectively anchor bacteria to the surface of straw and greatly facilitate the adhesion and growth of bacteria. Consequently, this technology could effectively accelerate the degradation and transformation of straw into nutrients, including nitrogen (N), phosphorus (P), potassium (K), and organic matters (OM). Pot and field tests indicated that SRA displayed significant positive effects on the growth of the next crop. Importantly, SRA could effectively decrease greenhouse gas emissions from farmland, which is beneficial for the environment. Therefore, this work provides a facile and promising method to facilitate the degradation of straw, which might have a potential application value.