Cargando…
Prediction of Marine Pycnocline Based on Kernel Support Vector Machine and Convex Optimization Technology
With the explosive growth of ocean data, it is of great significance to use ocean observation data to analyze ocean pycnocline data in military field. However, due to natural factors, most of the time the ocean hydrological data is not complete. In this case, predicting the ocean hydrological data b...
Autores principales: | Yang, Jiachen, Liu, Lin, Zhang, Linfeng, Li, Gen, Sun, Zhonghao, Song, Houbing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479887/ https://www.ncbi.nlm.nih.gov/pubmed/30935145 http://dx.doi.org/10.3390/s19071562 |
Ejemplares similares
-
Regularization, optimization, kernels, and support vector machines
por: Suykens, Johan A K, et al.
Publicado: (2015) -
Influence of pycnocline on settling behaviour of non-spherical particle and wake evolution
por: Mrokowska, Magdalena M.
Publicado: (2020) -
Learning with kernels: support vector machines, regularization, optimization, and beyond
por: Schölkopf, Bernhard, et al.
Publicado: (2002) -
Generalized convexity and vector optimization
por: Mishra, Shashi Kant, et al.
Publicado: (2009) -
Support Vector Machines and Kernels for Computational Biology
por: Ben-Hur, Asa, et al.
Publicado: (2008)