Cargando…

The Distribution of Tryptophan-Dependent Indole-3-Acetic Acid Synthesis Pathways in Bacteria Unraveled by Large-Scale Genomic Analysis

Bacterial indole-3-acetic acid (IAA), an effector molecule in microbial physiology, plays an important role in plant growth-promotion. Here, we comprehensively analyzed about 7282 prokaryotic genomes representing diverse bacterial phyla, combined with root-associated metagenomic data to unravel the...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Pengfan, Jin, Tao, Kumar Sahu, Sunil, Xu, Jin, Shi, Qiong, Liu, Huan, Wang, Yayu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479905/
https://www.ncbi.nlm.nih.gov/pubmed/30974826
http://dx.doi.org/10.3390/molecules24071411
_version_ 1783413453013123072
author Zhang, Pengfan
Jin, Tao
Kumar Sahu, Sunil
Xu, Jin
Shi, Qiong
Liu, Huan
Wang, Yayu
author_facet Zhang, Pengfan
Jin, Tao
Kumar Sahu, Sunil
Xu, Jin
Shi, Qiong
Liu, Huan
Wang, Yayu
author_sort Zhang, Pengfan
collection PubMed
description Bacterial indole-3-acetic acid (IAA), an effector molecule in microbial physiology, plays an important role in plant growth-promotion. Here, we comprehensively analyzed about 7282 prokaryotic genomes representing diverse bacterial phyla, combined with root-associated metagenomic data to unravel the distribution of tryptophan-dependent IAA synthesis pathways and to quantify the IAA synthesis-related genes in the plant root environments. We found that 82.2% of the analyzed bacterial genomes were potentially capable of synthesizing IAA from tryptophan (Trp) or intermediates. Interestingly, several phylogenetically diverse bacteria showed a preferential tendency to utilize different pathways and tryptamine and indole-3-pyruvate pathways are most prevalent in bacteria. About 45.3% of the studied genomes displayed multiple coexisting pathways, constituting complex IAA synthesis systems. Furthermore, root-associated metagenomic analyses revealed that rhizobacteria mainly synthesize IAA via indole-3-acetamide (IAM) and tryptamine (TMP) pathways and might possess stronger IAA synthesis abilities than bacteria colonizing other environments. The obtained results refurbished our understanding of bacterial IAA synthesis pathways and provided a faster and less labor-intensive alternative to physiological screening based on genome collections. The better understanding of IAA synthesis among bacterial communities could maximize the utilization of bacterial IAA to augment the crop growth and physiological function.
format Online
Article
Text
id pubmed-6479905
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-64799052019-04-30 The Distribution of Tryptophan-Dependent Indole-3-Acetic Acid Synthesis Pathways in Bacteria Unraveled by Large-Scale Genomic Analysis Zhang, Pengfan Jin, Tao Kumar Sahu, Sunil Xu, Jin Shi, Qiong Liu, Huan Wang, Yayu Molecules Article Bacterial indole-3-acetic acid (IAA), an effector molecule in microbial physiology, plays an important role in plant growth-promotion. Here, we comprehensively analyzed about 7282 prokaryotic genomes representing diverse bacterial phyla, combined with root-associated metagenomic data to unravel the distribution of tryptophan-dependent IAA synthesis pathways and to quantify the IAA synthesis-related genes in the plant root environments. We found that 82.2% of the analyzed bacterial genomes were potentially capable of synthesizing IAA from tryptophan (Trp) or intermediates. Interestingly, several phylogenetically diverse bacteria showed a preferential tendency to utilize different pathways and tryptamine and indole-3-pyruvate pathways are most prevalent in bacteria. About 45.3% of the studied genomes displayed multiple coexisting pathways, constituting complex IAA synthesis systems. Furthermore, root-associated metagenomic analyses revealed that rhizobacteria mainly synthesize IAA via indole-3-acetamide (IAM) and tryptamine (TMP) pathways and might possess stronger IAA synthesis abilities than bacteria colonizing other environments. The obtained results refurbished our understanding of bacterial IAA synthesis pathways and provided a faster and less labor-intensive alternative to physiological screening based on genome collections. The better understanding of IAA synthesis among bacterial communities could maximize the utilization of bacterial IAA to augment the crop growth and physiological function. MDPI 2019-04-10 /pmc/articles/PMC6479905/ /pubmed/30974826 http://dx.doi.org/10.3390/molecules24071411 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhang, Pengfan
Jin, Tao
Kumar Sahu, Sunil
Xu, Jin
Shi, Qiong
Liu, Huan
Wang, Yayu
The Distribution of Tryptophan-Dependent Indole-3-Acetic Acid Synthesis Pathways in Bacteria Unraveled by Large-Scale Genomic Analysis
title The Distribution of Tryptophan-Dependent Indole-3-Acetic Acid Synthesis Pathways in Bacteria Unraveled by Large-Scale Genomic Analysis
title_full The Distribution of Tryptophan-Dependent Indole-3-Acetic Acid Synthesis Pathways in Bacteria Unraveled by Large-Scale Genomic Analysis
title_fullStr The Distribution of Tryptophan-Dependent Indole-3-Acetic Acid Synthesis Pathways in Bacteria Unraveled by Large-Scale Genomic Analysis
title_full_unstemmed The Distribution of Tryptophan-Dependent Indole-3-Acetic Acid Synthesis Pathways in Bacteria Unraveled by Large-Scale Genomic Analysis
title_short The Distribution of Tryptophan-Dependent Indole-3-Acetic Acid Synthesis Pathways in Bacteria Unraveled by Large-Scale Genomic Analysis
title_sort distribution of tryptophan-dependent indole-3-acetic acid synthesis pathways in bacteria unraveled by large-scale genomic analysis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479905/
https://www.ncbi.nlm.nih.gov/pubmed/30974826
http://dx.doi.org/10.3390/molecules24071411
work_keys_str_mv AT zhangpengfan thedistributionoftryptophandependentindole3aceticacidsynthesispathwaysinbacteriaunraveledbylargescalegenomicanalysis
AT jintao thedistributionoftryptophandependentindole3aceticacidsynthesispathwaysinbacteriaunraveledbylargescalegenomicanalysis
AT kumarsahusunil thedistributionoftryptophandependentindole3aceticacidsynthesispathwaysinbacteriaunraveledbylargescalegenomicanalysis
AT xujin thedistributionoftryptophandependentindole3aceticacidsynthesispathwaysinbacteriaunraveledbylargescalegenomicanalysis
AT shiqiong thedistributionoftryptophandependentindole3aceticacidsynthesispathwaysinbacteriaunraveledbylargescalegenomicanalysis
AT liuhuan thedistributionoftryptophandependentindole3aceticacidsynthesispathwaysinbacteriaunraveledbylargescalegenomicanalysis
AT wangyayu thedistributionoftryptophandependentindole3aceticacidsynthesispathwaysinbacteriaunraveledbylargescalegenomicanalysis
AT zhangpengfan distributionoftryptophandependentindole3aceticacidsynthesispathwaysinbacteriaunraveledbylargescalegenomicanalysis
AT jintao distributionoftryptophandependentindole3aceticacidsynthesispathwaysinbacteriaunraveledbylargescalegenomicanalysis
AT kumarsahusunil distributionoftryptophandependentindole3aceticacidsynthesispathwaysinbacteriaunraveledbylargescalegenomicanalysis
AT xujin distributionoftryptophandependentindole3aceticacidsynthesispathwaysinbacteriaunraveledbylargescalegenomicanalysis
AT shiqiong distributionoftryptophandependentindole3aceticacidsynthesispathwaysinbacteriaunraveledbylargescalegenomicanalysis
AT liuhuan distributionoftryptophandependentindole3aceticacidsynthesispathwaysinbacteriaunraveledbylargescalegenomicanalysis
AT wangyayu distributionoftryptophandependentindole3aceticacidsynthesispathwaysinbacteriaunraveledbylargescalegenomicanalysis