Cargando…
Assessing the Damage Tolerance of Out of Autoclave Manufactured Carbon Fibre Reinforced Polymers Modified with Multi-Walled Carbon Nanotubes
The present study aims to investigate the influence of multi-walled carbon nanotubes (MWCNTs) on the damage tolerance after impact (CAI) of the development of Out of Autoclave (OoA) carbon fibre reinforced polymer (CFRP) laminates. The introduction of MWCNTs into the structure of CFRPs has been succ...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479945/ https://www.ncbi.nlm.nih.gov/pubmed/30986932 http://dx.doi.org/10.3390/ma12071080 |
_version_ | 1783413462403121152 |
---|---|
author | Dimoka, Polyxeni Psarras, Spyridon Kostagiannakopoulou, Christine Kostopoulos, Vassilis |
author_facet | Dimoka, Polyxeni Psarras, Spyridon Kostagiannakopoulou, Christine Kostopoulos, Vassilis |
author_sort | Dimoka, Polyxeni |
collection | PubMed |
description | The present study aims to investigate the influence of multi-walled carbon nanotubes (MWCNTs) on the damage tolerance after impact (CAI) of the development of Out of Autoclave (OoA) carbon fibre reinforced polymer (CFRP) laminates. The introduction of MWCNTs into the structure of CFRPs has been succeeded by adding carbon nanotube-enriched sizing agent for the pre-treatment of the fibre preform and using an in-house developed methodology that can be easily scaled up. The modified CFRPs laminates with 1.5 wt.% MWCNTs were subjected to low velocity impact at three impact energy levels (8, 15 and 30 J) and directly compared with the unmodified laminates. In terms of the CFRPs impact performance, compressive strength of nanomodified composites was improved for all energy levels compared to the reference material. The test results obtained from C-scan analysis of nano-modified specimens showed that the delamination area after the impact is mainly reduced, without the degradation of compressive strength and stiffness, indicating a potential improvement of damage tolerance compared to the reference material. SEM analysis of fracture surfaces revealed the additional energy dissipation mechanisms; pulled-out carbon nanotubes which is the main reason for the improved damage tolerance of the multifunctional composites. |
format | Online Article Text |
id | pubmed-6479945 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-64799452019-04-29 Assessing the Damage Tolerance of Out of Autoclave Manufactured Carbon Fibre Reinforced Polymers Modified with Multi-Walled Carbon Nanotubes Dimoka, Polyxeni Psarras, Spyridon Kostagiannakopoulou, Christine Kostopoulos, Vassilis Materials (Basel) Article The present study aims to investigate the influence of multi-walled carbon nanotubes (MWCNTs) on the damage tolerance after impact (CAI) of the development of Out of Autoclave (OoA) carbon fibre reinforced polymer (CFRP) laminates. The introduction of MWCNTs into the structure of CFRPs has been succeeded by adding carbon nanotube-enriched sizing agent for the pre-treatment of the fibre preform and using an in-house developed methodology that can be easily scaled up. The modified CFRPs laminates with 1.5 wt.% MWCNTs were subjected to low velocity impact at three impact energy levels (8, 15 and 30 J) and directly compared with the unmodified laminates. In terms of the CFRPs impact performance, compressive strength of nanomodified composites was improved for all energy levels compared to the reference material. The test results obtained from C-scan analysis of nano-modified specimens showed that the delamination area after the impact is mainly reduced, without the degradation of compressive strength and stiffness, indicating a potential improvement of damage tolerance compared to the reference material. SEM analysis of fracture surfaces revealed the additional energy dissipation mechanisms; pulled-out carbon nanotubes which is the main reason for the improved damage tolerance of the multifunctional composites. MDPI 2019-04-02 /pmc/articles/PMC6479945/ /pubmed/30986932 http://dx.doi.org/10.3390/ma12071080 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dimoka, Polyxeni Psarras, Spyridon Kostagiannakopoulou, Christine Kostopoulos, Vassilis Assessing the Damage Tolerance of Out of Autoclave Manufactured Carbon Fibre Reinforced Polymers Modified with Multi-Walled Carbon Nanotubes |
title | Assessing the Damage Tolerance of Out of Autoclave Manufactured Carbon Fibre Reinforced Polymers Modified with Multi-Walled Carbon Nanotubes |
title_full | Assessing the Damage Tolerance of Out of Autoclave Manufactured Carbon Fibre Reinforced Polymers Modified with Multi-Walled Carbon Nanotubes |
title_fullStr | Assessing the Damage Tolerance of Out of Autoclave Manufactured Carbon Fibre Reinforced Polymers Modified with Multi-Walled Carbon Nanotubes |
title_full_unstemmed | Assessing the Damage Tolerance of Out of Autoclave Manufactured Carbon Fibre Reinforced Polymers Modified with Multi-Walled Carbon Nanotubes |
title_short | Assessing the Damage Tolerance of Out of Autoclave Manufactured Carbon Fibre Reinforced Polymers Modified with Multi-Walled Carbon Nanotubes |
title_sort | assessing the damage tolerance of out of autoclave manufactured carbon fibre reinforced polymers modified with multi-walled carbon nanotubes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479945/ https://www.ncbi.nlm.nih.gov/pubmed/30986932 http://dx.doi.org/10.3390/ma12071080 |
work_keys_str_mv | AT dimokapolyxeni assessingthedamagetoleranceofoutofautoclavemanufacturedcarbonfibrereinforcedpolymersmodifiedwithmultiwalledcarbonnanotubes AT psarrasspyridon assessingthedamagetoleranceofoutofautoclavemanufacturedcarbonfibrereinforcedpolymersmodifiedwithmultiwalledcarbonnanotubes AT kostagiannakopoulouchristine assessingthedamagetoleranceofoutofautoclavemanufacturedcarbonfibrereinforcedpolymersmodifiedwithmultiwalledcarbonnanotubes AT kostopoulosvassilis assessingthedamagetoleranceofoutofautoclavemanufacturedcarbonfibrereinforcedpolymersmodifiedwithmultiwalledcarbonnanotubes |