Cargando…

Analysis of Non-Ionic Surfactant Triton X-100 Using Hydrophilic Interaction Liquid Chromatography and Mass Spectrometry

It is well known that surfactants increase the solubility of hydrophobic organic compounds and cause adverse environmental effects. The removal of these compounds from the contaminated soil or ground-water is particularly difficult due to their water soluble feature. In this work, an ultra-high perf...

Descripción completa

Detalles Bibliográficos
Autores principales: Farsang, Evelin, Gaál, Violetta, Horváth, Ottó, Bárdos, Erzsébet, Horváth, Krisztián
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480021/
https://www.ncbi.nlm.nih.gov/pubmed/30925777
http://dx.doi.org/10.3390/molecules24071223
Descripción
Sumario:It is well known that surfactants increase the solubility of hydrophobic organic compounds and cause adverse environmental effects. The removal of these compounds from the contaminated soil or ground-water is particularly difficult due to their water soluble feature. In this work, an ultra-high performance hydrophilic interaction liquid chromatographic method was developed for the separation of oligomers of Triton X-100 octylphenol-polyethoxylate non-ionic surfactant. Liquid chromatography-mass spectrometry (LC-MS) was used to identify the Triton X-100 compounds. There was a 44 mass unit difference between two adjacent peaks that is the molar mass of one ethylene oxide group (–CH [Formula: see text] CH [Formula: see text] O–). A quadratic retention model was applied for the estimation of retention of the examined non-ionic surfactant and the optimization of gradient elution conditions. The optimized method was suitable for the baseline separation of 28 Triton X-100 oligomers in five minutes.