Cargando…
Estimating the Composition of Food Nutrients from Hyperspectral Signals Based on Deep Neural Networks
There is an increasing demand for acquiring details of food nutrients especially among those who are sensitive to food intakes and weight changes. To meet this need, we propose a new approach based on deep learning that precisely estimates the composition of carbohydrates, proteins, and fats from hy...
Autores principales: | Ahn, DaeHan, Choi, Ji-Young, Kim, Hee-Chul, Cho, Jeong-Seok, Moon, Kwang-Deog, Park, Taejoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480044/ https://www.ncbi.nlm.nih.gov/pubmed/30935139 http://dx.doi.org/10.3390/s19071560 |
Ejemplares similares
-
Reliable Identification of Vehicle-Boarding Actions Based on Fuzzy Inference System
por: Ahn, DaeHan, et al.
Publicado: (2017) -
Accurate Driver Detection Exploiting Invariant Characteristics of Smartphone Sensors
por: Ahn, DaeHan, et al.
Publicado: (2019) -
Deep Learning-Based Near-Infrared Hyperspectral Imaging for Food Nutrition Estimation
por: Li, Tianhao, et al.
Publicado: (2023) -
Optimization of a Cell Counting Algorithm for Mobile Point-of-Care Testing Platforms
por: Ahn, DaeHan, et al.
Publicado: (2014) -
Blood Stain Classification with Hyperspectral Imaging and Deep Neural Networks
por: Książek, Kamil, et al.
Publicado: (2020)